首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

2.
We have carried out this work to comprehend the possible mechanisms of the first ground level enhancement (GLE71 17 May 2012 01:50 UT) in cosmic ray intensity of the solar cycle 24. For this, the cosmic ray intensities registered by neutron monitors at several sites have been analyzed and studied with concurrent solar flares of different energy channels. To assess empirically whether the GLE might have been caused by the energy released from solar flare or CME-driven shock, we identify the possible time line in terms of the lowest spectral index determined from proton fluxes. If the GLE is caused by the energy released from particle acceleration in solar flare, the intensive phase of the flare representing the extreme emission should exist within/around the possible time line. In this respect, it is observed that the possible time line lies within the prominent phase of CME-driven shock. For better understanding, we have checked the possible relativistic energy with respect to solar flare as well as CME-driven shock. As witnessed, if the extreme emission phase of the flare is considered as the reason for the causation of GLE peak, the flare components procured insufficient amount of energy (≤~0.085 GeV) to produce a GLE. If the extreme emission phase of the flare is also considered as the dominator along GLE onset, the possible energy procurement (≤~0.414 GeV) is still not adequate to produce a GLE. In contrast, the CME-driven shock is capable of procuring enough possible relativistic energy (≥~1.21 GeV) that is sufficient amount of the energy for a GLE production. Any amount of the energy (<0.414 GeV) released from preceding flare components is supposed to have been contributed to the shock process. Thus, it is assumed that the GLE71 was possibly caused by the energy released from the shock acceleration, which might have been boosted by the energy emanated from preceding flare.  相似文献   

3.
Cosmic rays registered by Neutron Monitor on the surface of the Earth are believed to originate from outer space, and sometimes also from the exotic objects of the Sun. Whilst the intensities of the cosmic rays are observed to be enhanced with sudden, sharp and short-lived increases, they are termed as ground level enhancements (GLEs). They are the occurrences in solar cosmic ray intensity variations on short-term basis, so different solar factors erupted from the Sun can be responsible for causing them. In this context, an attempt has been made to determine quantitative relationships of the GLEs having peak increase >5% with simultaneous solar, interplanetary and geophysical factors from 1997 through 2006, thereby searching the responsible factors which seem to cause the enhancements. Results suggest that GLE peaks might be caused by solar energetic particle fluxes and solar flares. The proton fluxes which seemed to cause GLE peaks were also supported by their corresponding fluences. For most of the flares, the time integrated rising portion of the flare emission refers to the strong portion of X-ray fluxes which might be the concern to GLE peak. On an average, GLE peak associated X-ray flux (0.71×10−4 w/m2) is much stronger than GLE background associated X-ray flux (0.11×10−6 w/m2). It gives a general consent that the GLE peak is presumably caused by the solar flare. Coronal mass ejection alone does not seem to cause GLE. Coronal mass ejection presumably causes geomagnetic disturbances characterized by geomagnetic indices and polarities of interplanetary magnetic fields.  相似文献   

4.
Using data from ground-based observations of cosmic rays (CRs) on the worldwide network of stations and spacecraft, we have investigated the proton spectra and the CR anisotropy during the ground level enhancements of CRs on May 17, 2012 (GLE71) and January 6, 2014 (GLE72) occurred in solar cycle 24 by the spectrographic global survey method. We provide the CR rigidity spectra and the relative changes in the intensity of CRs with a rigidity of 2 GV in the solar–ecliptic geocentric coordinate system in specific periods of these events. We show that the proton acceleration during GLE71 and GLE72 occurred up to rigidities R ~ 2.3?2.5 GV, while the differential rigidity spectra of solar CRs are described neither by a power nor by an exponential function of particle rigidity. At the times of the events considered the Earth was in a loop-like structure of the interplanetary magnetic field.  相似文献   

5.
The European Commission is supporting the real-time database for high-resolution neutron monitor measurements (NMDB) as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. The realization of the NMDB will provide the opportunity for several applications most of which will be implemented in real-time. An important application will be the establishment of an Alert signal when dangerous solar particle events are heading to the Earth, resulting into a ground level enhancement (GLE) registered by neutron monitors (NMs). The cosmic ray community has been occupied with the question of establishing such an Alert for many years and recently several groups succeeded in creating a proper algorithm capable of detecting space weather threats in an off-line mode. A lot of original work has been done to this direction and every group working in this field performed routine runs for all GLE cases, resulting into statistical analyses of GLE events. The next step was to make this algorithm as accurate as possible and most importantly, working in real-time. This was achieved when, during the last GLE observed so far, a real-time GLE Alert signal was produced. In this work, the steps of this procedure as well as the functionality of this algorithm for both the scientific community and users are being discussed. Nevertheless, the transition of the Alert algorithm to the NMDB is also being discussed.  相似文献   

6.
The data on primary cosmic ray fluxes at the top of the atmosphere are given for the period since 1937 till the present time. These data have been obtained from the regular cosmic ray flux measurements in the stratosphere and on the ground level. They have been used to find the relationship of cosmic ray fluxes with solar activity (sunspot number). On the basis of the deduced relationship the cosmic ray fluxes in the past have been recovered, as the sunspot number is known since 1500. The link between the smoothed data on Be-10 atom concentrations and cosmic ray fluxes is established which gives a possibility to calculate cosmic ray fluxes in the far past.  相似文献   

7.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

8.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

9.
Solar circumstances have been evaluated for January 28, 1967, the date of an observed ground level enhancement of cosmic rays which was not preceded by observation of a suitably great Hα flare. On the visible solar hemisphere, a bright subflare at S23° E19° occurred in appropriate time association with the cosmic ray event, and was accompanied by weak X-ray enhancement and radio frequency emission. If this flare, alone, or in combination with other minor flares observed on the visible hemisphere on January 28 was the source of the energetic cosmic rays recorded on that date, then current thinking regarding the characteristics of cosmic ray flares must be modified. An initial study of probable circumstances on the invisible hemisphere did not lead to the immediate recognition of amajor center of activity as the probable source of a cosmic ray flare. Further evaluation of all centers of activity on the invisible hemisphere identified one region, McMath Plage No. 8687, 64° beyond the west limb, as the most plausible, possible site for the cosmic ray flare on January 28, 1967. The location of this region is in accord with the source-position deduced in Lockwood's analysis (1968) of the cosmic ray event. This center of activity could not have been more than 5 days old on January 28, 1967. The interval of major activity in the region was confined primarily to the invisible hemisphere. The occurrence of an ‘isolated’ major flare in the region on February 13, 1967 is discussed. The present study exemplifies the partial nature of solar observations which are limited to the visible hemisphere. The possible role of exceptional geomagnetic calm, 1963–1967, in permitting atypical cosmic ray enhancements, as on January 28, 1967, is mentioned.  相似文献   

10.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

11.
Solar flares and the cosmic ray intensity   总被引:2,自引:0,他引:2  
C. J. Hatton 《Solar physics》1980,66(1):159-165
The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance 1. This model leads to a radius for the modulation region of 60–70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20.  相似文献   

12.
Our study deals with the correlations between the solar activity on the one hand and the solar irradiance above the Earth’s atmosphere and at ground level on the other. We analyzed the combined ACRIM I+II time series of the total solar irradiance (TSI), the Mauna Loa time series of terrestrial insolation data, and data of terrestrial cosmic ray fluxes. We find that the correlation between the TSI and the sunspot number is strongly non-linear. We interpret this as the net balance between brightening by faculae and darkening by sunspots where faculae dominate at low activity and sunspots dominate at high activity. Such a behavior is hitherto known from stellar analogs of the Sun in a statistical manner. We perform the same analysis for the Mauna Loa data of terrestrial insolation. Here we find that the linear relation between sunspot number and insolation shows more than 1% rise in insolation by sunspot number variations which is much stronger than for the TSI. Our conclusion is that the Earth atmosphere acts as an amplifier between space and ground, and that the amplification is probably controlled by solar activity. We suspect the cosmic rays intensity as the link between solar activity and atmospheric transparency. A Fourier analysis of the time series of insolation shows three dominant peaks: 10.5, 20.4, and 14.0 years. As a matter of fact, the cosmic rays data show the same pattern of significant peaks: 10.7, 22.4, and 14.9 years. This analogy supports our idea that the cosmic rays variation has influence on the transparency of the Earth atmosphere.  相似文献   

13.
Concurrent observations of the solar flare of March 12, 1969 by two spacecrafts separated in solar longitude by 38° show that the accessibility at 1 AU to cosmic ray particles is not a simple function of the relative solar longitude. The cosmic ray flux, degree of anisotropy, and rise time all indicate that the favored path for cosmic ray propagation in this event was some 40° to the east of the nominal Archimedes spiral line of force from the flare location. This is interpreted as evidence for either (a) extreme stochastical wandering of the lines of force of the interplanetary magnetic field, or (b) the redistribution of the cosmic rays in coronal magnetic fields prior to escape onto the nominal Archimedes spiral lines of force.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.Now at Physical Research Laboratory, Ahmedabad, India.  相似文献   

14.
We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21–23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.  相似文献   

15.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

16.
The behaviour of relative content of one-fold neutrons in the incident flux of cosmic rays during Forbush-decreases and solar cosmic ray flares is considered based on the network of cosmic ray stations. The barometric dependence of this value on the network of cosmic ray stations. The barometric dependence of this value on the latitude and see level altitude of a cosmic ray station is obtained.  相似文献   

17.
Proposed solar wind-magnetosphere energy coupling functions are studied. An empirical formula proposed by Svalgaard (1977) is found to predict the geomagnetic activity quite well.

The influence of solar wind interaction regions on the tropospheric circulation, through a suggested cosmic ray mechanism, was investigated. The cosmic ray intensity at Earth clearly showed a decrease at the time of passage of an interaction region. It is suggested that the well-known dip in the Vorticity Area Index may be caused by an interaction-modulated decrease in cosmic ray intensity.  相似文献   


18.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

19.
In this work the galactic cosmic ray modulation in relation to solar activity indices and heliospheric parameters during the years 1996??C?2010 covering solar cycle 23 and the solar minimum between cycles 23 and 24 is studied. A new perspective of this contribution is that cosmic ray data with a rigidity of 10 GV at the top of the atmosphere obtained from many ground-based neutron monitors were used. The proposed empirical relation gave much better results than those in previous works concerning the hysteresis effect. The proposed models obtained from a combination of solar activity indices and heliospheric parameters give a standard deviation <?10?% for all the cases. The correlation coefficient between the cosmic ray variations of 10?GV and the sunspot number reached a value of r=?0.89 with a time lag of 13.6±0.4 months. The best reproduction of the cosmic ray intensity is obtained by taking into account solar and interplanetary indices such as sunspot number, interplanetary magnetic field, CME index, and heliospheric current sheet tilt. The standard deviation between the observed and calculated values is about 7.15?% for all of solar cycle 23; it also works very well during the different phases of the cycle. Moreover, the use of the cosmic ray intensity of 10?GV during the long minimum period between cycles 23 and 24 is of special interest and is discussed in terms of cosmic ray intensity modulation.  相似文献   

20.
Using data obtained with neutron monitors and space-borne instruments, we analyzed the second ground-level enhancement (GLE) of Solar Cycle 24, namely the event of 10 September 2017 (GLE 72), and derived the spectral and angular characteristics of associated GLE particles. We employed a new neutron-monitor yield function and a recently proposed model based on an optimization procedure. The method consists of simulating particle propagation in a model magnetosphere in order to derive the cutoff rigidity and neutron-monitor asymptotic directions. Subsequently, the rigidity spectrum and anisotropy of GLE particles are obtained in their dynamical evolution during the event on the basis of an inverse-problem solution. The derived angular distribution and spectra are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号