首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-mass X-ray binary RX J0146.9+6121, with optical counterpart LS I+61°235 (V831 Cas), is an intriguing system on the outskirts of the open cluster NGC 663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400 s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240 d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10 d. We give arguments to support the interpretation that the 0.34 and 0.10 d periods could be due to stellar oscillations of the B-type primary star and that the 0.67 d period is the spin period of the Be star with a spin axis inclination of  23+10−8  degrees. We measured a systemic velocity of  −37.0 ± 4.3 km s−1  confirming that LS I+61°235 has a high probability of membership in the young cluster NGC 663 from which the system's age can be estimated as 20–25 Myr. From archival RXTE All Sky Monitor (ASM) data we further find 'super' X-ray outbursts roughly every 450 d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330 d.  相似文献   

2.
We present optical observations of the recently discovered ROSAT source RX J1238 − 38, which is a new member of the intermediate polar class of asynchronous magnetic cataclysmic variables (CVs). Optical photometry reveals two coherent periodicities at 1860 and 2147 s respectively, with similar amplitudes of ∼ 8 per cent. Infrared ( J -band) intensity variations are detected only at the 1860-s period, at an amplitude of ∼ 15 per cent. The initial hypothesis, that these two periods were the spin and synodic (i.e., beat) period respectively, appears not to be supported by the spectroscopic data. The emission lines vary on the longer photometric period, and radial velocity variations are detected at this period and at a longer period of ∼ 5300 s, which we identify as the spin and orbital periods respectively. The most likely explanation for the 1860-s period is that it is the first harmonic of the ω − Ω sideband, leading to an improved determination of the orbital period as 5077 s (= 84 min). If this interpretation is correct, RX J1238 − 38 joins EX Hya as the only other intermediate polar below the 2–3 h period gap, and with an orbital period close to the minimum for CVs with non-degenerate secondaries. The spin-modulated emission-line radial velocities and widths appear to be anticorrelated, with maximum width occurring at maximum blueshift. Such an anticorrelation is expected for aspect changes of accretion curtains. Polarimetric observations of RX J1238 − 38 were inconclusive, although we can put a limit of 0.4 per cent on any variability on the circular polarization, and certainly there is no indication of variations at the photometric or spectroscopic periods.  相似文献   

3.
We present Very Large Telescope (VLT) low-resolution spectroscopy of the neutron star X-ray transient XTE J2123−058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 per cent to the total flux at λ 6300 and orbits the neutron star at     . Contrary to other soft X-ray transients (SXTs), the H α emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-centre technique we obtain     and hence     This, combined with a previous determination of the inclination angle     yields     and     . M 2 agrees well with the observed spectral type. Doppler tomography of the H α emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of −     this value is consistent with the galactic rotation velocity at the position of J2123−058, and hence a halo origin. The formation scenario of J2123−058 is still unresolved.  相似文献   

4.
We present time-resolved optical spectroscopy and photometry of the nova-like cataclysmic variable V348 Puppis. The system displays the same spectroscopic behaviour as SW Sex stars, so we classify V348 Pup as a new member of the class. V348 Pup is the second SW Sex system (the first is V795 Herculis) which lies in the period gap. The spectra exhibit enhanced He  ii λ 4686 emission, reminiscent of magnetic cataclysmic variables. The study of this emission line gives a primary velocity semi-amplitude of     . We have also derived the system parameters, obtaining:     ,         ,     and     . The spectroscopic behaviour of V348 Pup is very similar to that of V795 Her, with the exception that V348 Pup shows deep eclipses. We have computed the '0.5-absorption' spectrum of both systems, obtaining spectra that resemble the absorption spectrum of a B0 V star. We propose that absorption in SW Sex systems can be produced by a vertically extended atmosphere which forms where the gas stream re-impacts the system, either at the accretion disc or at the magnetosphere of the white dwarf (assuming a magnetic scenario).  相似文献   

5.
We present 14 nights of medium resolution (1–2 Å) spectroscopy of the eclipsing cataclysmic variable UU Aquarii obtained during a high accretion state in 1995 August–October. UU Aqr appears to be an SW Sextantis (SW Sex) star, as noted by Baptista, Steiner & Horne, and we discuss its spectroscopic behaviour in the context of the SW Sex phenomenon. Emission-line equivalent width curves, Doppler tomography, and line profile simulation provide evidence for the presence of a bright spot at the impact site of the accretion stream with the edge of the disc, and a non-axisymmetric, vertically and azimuthally extended absorbing structure in the disc. The absorption has maximum depth in the emission lines around orbital phase 0.8, but is present from φ≈0.4 to φ≈0.95. An origin is explored for this absorbing structure (as well as for the other spectroscopic behaviour of UU Aqr) in terms of the explosive impact of the accretion stream with the disc.  相似文献   

6.
We present optical and X-ray data of the cataclysmic variable RX 0744−52 discovered using ROSAT by Motch et al. High-resolution spectroscopy centred on the Hα line indicates a probable orbital period of 3.60 h. From its distance (obtained using polarimetry), its X-ray luminosity, its X-ray colour and its X-ray/UV+optical ratio, we suggest that RX 0744−52 is a new intermediate polar. The absence of a significant coherent modulation in the X-ray light curve suggests either that RX 0744−52 has a low inclination or that the rotational and magnetic axes must be closely aligned. This is consistent with its small radial velocity amplitude.  相似文献   

7.
We present polarimetric and spectroscopic observations of the ROSAT source RX J1141.3−6410, recently identified as a polar. The detection of circular polarization variations, with an amplitude of 10 per cent, over a 3.16-h period confirms that the system is a polar (AM Herculis star). Supporting evidence comes from the nature of the emission lines and their radial velocity variability. In addition, we observe continuum slope changes in the far-red spectral region (∼6000–8200 Å), indicative of phase dependent cyclotron emission. Polarimetric modelling at two wavelengths establishes RX J1141.3−6410 as a single-pole system, with i ∼ β ∼70°. The accretion region is extended in magnetic longitude, and is totally self-occulted for ∼25 per cent of the orbit. The radial velocity curves derived from the emission lines show a phasing with maximum blueshift occurring with Δ φ ∼0.05 of maximum intensity and circular polarisation. In addition, the broader component of the lines exhibit a substantial radial velocity phase shift with respect to the narrower component, in the sense that the broad component preceeds the narrow. This can be readily understood if the narrower component is principally a result of orbital motion of the stream material and the broad component mainly a result of streaming motion near the coupling region. The phasing of the Ca  ii near-infrared line radial velocities also supports this general picture.  相似文献   

8.
We present results from a new XMM–Newton observation of the high-redshift quasar RX J1028.6 – 0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a previous study with ASCA , is confirmed to be present, with, however, a reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is  2.1(+0.4−0.3) × 1022  cm−2  for cold matter, and higher for ionized gas. The spectral flattening shows remarkable similarity with that of two similar object, namely GB 1428 + 4217 and PMN J0525 − 3343. The results improve upon those obtained from a previous short-exposure observation for RX J1028.6 – 0844 with XMM–Newton . A comparative study of the two XMM–Newton observations reveals a change in the power-law photon index from  Γ≃ 1.3  to 1.5 on time-scales of about one year. A tentative excess emission feature in the rest-frame 5–10 keV band is suggested, which is similar to that marginally suggested for GB 1428 + 4217.  相似文献   

9.
We compare ultraviolet (UV) spectra of the recent soft X-ray transients XTE J1118+480 and XTE J1859+226. The emission line strengths in XTE J1118+480 strongly suggest that the accreting material has been CNO processed. We show that this system must have come into contact with a secondary star of about 1.5 M, and an orbital period ∼15 h, very close to the bifurcation value at which the nuclear and angular momentum loss time-scales are similar. Subsequent evolution to the current period of 4.1 h was driven by angular momentum loss. In passing through a period of 7.75 h the secondary star would have shown essentially normal surface abundances. XTE J1118+480 could thus represent a slightly later evolutionary stage of A0620-00. We briefly discuss the broad Ly α absorption wings in XTE J1118+480.  相似文献   

10.
Blue- and redshifted hydrogen and helium satellite recombination lines have recently been discovered in the optical spectra of at least two supersoft X-ray sources (SSSs), RX J0513−069 and RX J0019.8+2156, and, tentatively, also in one short-period cataclysmic variable star (CV), the recurrent nova T Pyx. These features are thought to provide evidence for the presence of highly collimated jets in these systems. No similar spectral signatures have been detected in the spectra of other short-period CVs, despite a wealth of existing optical data on these systems. Here, we ask if this apparent absence of 'jet lines' in the spectra of most CVs already implies the absence of jets of the kind that appear to be present in the SSSs and perhaps T Pyx, or whether the current lack of jet detection in CVs can still be ascribed to observational difficulties.
To answer this question, we derive a simple, approximate scaling relation between the expected equivalent widths (EWs) of the observed jet lines in both types of systems and the accretion rate through the disc, EW(line)∝˙M4/3acc. We use this relation to predict the strength of jet lines in the spectra of 'ordinary' CVs, i.e. systems characterized by somewhat lower accretion rates than T Pyx. Making the assumption that the features seen in T Pyx are indeed jet lines, and using this system as a reference point, we find that, if jets are present in many CVs, they may be expected to produce optical satellite recombination lines with EWs of a few hundredths to a few tenths of an angstrom in suitably selected systems. A similar prediction is obtained if the SSS RX J0513−069 is used as a reference point. Such EWs are small enough to account for the non-detection of jet features in CVs to date, but large enough to allow them to be detected in data of sufficiently high quality, if they exist.  相似文献   

11.
We present time-resolved spectroscopy of the soft X-ray transient XTE J2123–058 in outburst. A useful spectral coverage of 3700–6700 Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ∼9000 Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh–Jeans tail of a hot blackbody spectrum. The strongest spectral lines are He  ii 4686 Å and C  iii /N  iii 4640 Å (Bowen blend) in emission. Their relative strengths suggest that XTE J2123–058 was formed in the Galactic plane, not in the halo. Other weak emission lines of He  ii and C  iv are present, and Balmer lines show a complex structure, blended with He  ii . He  ii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. H α shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTE J2123–058 can be explained by the same models invoked for those systems.  相似文献   

12.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

13.
We present results from our Chandra and XMM–Newton observations of two low-luminosity X-ray pulsators  SAX J1324.4−6200  and  SAX J1452.8−5949  which have spin periods of 172 and 437 s, respectively. The XMM–Newton spectra for both sources can be fitted well with a simple power-law model of photon index,  Γ∼ 1.0  . A blackbody model can equally well fit the spectra with a temperature,   kT ∼  2 keV, for both sources. During our XMM–Newton observations,  SAX J1324.4−6200  is detected with coherent X-ray pulsations at a period of 172.86 ± 0.02 s while no pulsations with a pulse fraction greater than 18 per cent (at 95 per cent confidence level) in 0.2–12 keV energy band are detected in  SAX J1452.8−5949  . The spin period of  SAX J1324.4−6200  is found to be increasing on a time-scale of     which would suggest that the accretor is a neutron star and not a white dwarf. Using subarcsec spatial resolution of the Chandra telescope, possible counterparts are seen for both sources in the near-infrared images obtained with the son of infrared spectrometer and array camera (SOFI) instrument on the New Technology Telescope. The X-ray and near-infrared properties of  SAX J1324.4−6200  suggest it to be a persistent high-mass accreting X-ray pulsar at a distance  ≤8 kpc  . We identify the near-infrared counterpart of  SAX J1452.8−5949  to be a late-type main-sequence star at a distance ≤10 kpc, thus ruling out  SAX J1452.8−5949  to be a high-mass X-ray binary. However, with the present X-ray and near-infrared observations, we cannot make any further conclusive conclusion about the nature of  SAX J1452.8−5949  .  相似文献   

14.
We observed the neutron star X-ray transient 2S 1803−245 in quiescence with the X-ray satellite XMM–Newton , but did not detect it. An analysis of the X-ray bursts observed during the 1998 outburst of 2S 1803−245 gives an upper limit to the distance of ≤7.3 kpc, leading to an upper limit on the quiescent 0.5–10 keV X-ray luminosity of  ≤2.8 × 1032 erg s−1  (3σ). Since the expected orbital period of 2S 1803−245 is several hours, this limit is not much higher than those observed for the quiescent black hole transients with similar orbital periods.  相似文献   

15.
New optical spectroscopy of the high-mass X-ray binary microquasar LS I +61 303 is presented. Eccentric orbital fits to our radial velocity measurements yield updated orbital parameters in good agreement with previous work. Our orbital solution indicates that the periastron passage occurs at radio phase 0.23 and the X-ray/radio outbursts are triggered 2.5–4 d after the compact star passage. The spectrum of the optical star is consistent with a B0 V spectral type and contributes ∼65 per cent of the total light, the remainder being the result of emission by a circumstellar disc. We also measure the projected rotational velocity to be   v sin  i ≃ 113 km s−1  .  相似文献   

16.
We study in a systematic way the quality factor of the lower and upper kilohertz quasi-periodic oscillations (kHz QPOs) in a sample of low-luminosity neutron star X-ray binaries, showing both QPOs varying over a wide frequency range. The sample includes 4U 1636−536, 4U 1608−522, 4U 1735−44, 4U 1728−34, 4U 1820−303 and 4U 0614+09. We find that all sources except 4U 0614+09 show evidence of a drop in the quality factor of their lower kHz QPOs at high frequency. For 4U 0614+09 only the rising part of the quality factor versus frequency curve has been sampled so far. At the same time, in all sources but 4U 1728−34, the quality factor of the upper kHz QPO increases all the way to the highest detectable frequencies. We show that the high-frequency behaviours of both the lower and the upper kHz QPO quality factors are consistent with what is expected if the drop is produced by the approach of an active oscillating region to the innermost stable circular orbit: the existence of which is a key feature of general relativity in the strong field regime. Within this interpretation, our results imply gravitational masses around 2 M for the neutron stars in those systems.  相似文献   

17.
Long-term monitoring of the recently discovered X-ray transient, IGR J17098−3628, by the All-Sky Monitor on-board the Rossi X-Ray Timing Explorer , has shown that it displays a long-term (≈163 d) quasi-periodic modulation in the data spanning its 'active' state (i.e. approximately MJD 53450–54200). Furthermore, this light curve is not typical of 'classical' soft X-ray transients, in that J17098−3628 has remained active since its initial discovery, and may be more akin to the pseudo-transient EXO 0748−676, which is now classified as a persistent low-mass X-ray binary (LMXB). However, EXO 0748−676 recently entered a more active phase (since approximately MJD 53050), and since then we find that it too displays a quasi-periodic modulation (≈181 d) in its light curve. This must be a 'superorbital' modulation, as the orbital period of EXO 0748−676 is well established (3.8 h), and hence we interpret both objects' long periods as representing some intrinsic properties of the accretion disc (such as coupled precessional and warping effects). By analogy, we therefore suggest that IGR J17098−3628 is another member of this class of pseudo-transient LMXBs and is likely to have a <1 d orbital period.  相似文献   

18.
We present     spectropolarimetry, and 12- and 2-μm imaging polarimetry of the southern massive star-forming region G333.6−0.2. Spectro-polarimetry measurements show that the polarization observed towards the nebula contains a mixture of both absorptive and emissive polarizations. Model fitting to the spectra indicates that the temperature of the mid-infrared emitting dust grains is generally ∼200 K and the optical depth of the absorbing dust at 9.7 μm is ∼1.5. Fits are also made to the polarimetry spectra, which show a reasonably constant peak absorptive polarization (∼3.4 per cent at 43°) across the face of the H  ii region. This absorptive polarization position angle is consistent with that found by the 2-μm imaging polarimetry     and is most likely due to the Galactic magnetic field local to G333.6−0.2. When the absorptive polarization is subtracted from the 12-μm polarization image, the emissive polarization pattern that is intrinsic to the star-forming region is revealed. A probable magnetic field configuration implied by the intrinsic polarization suggests star formation initially influenced by the Galactic magnetic field which is eventually perturbed by the star formation process.  相似文献   

19.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

20.
We present high-time-resolution spectroscopy of the non-eclipsing old nova V533 Herculis (N Her 1963). It is the second nova remnant affected by the 'SW Sex syndrome'. A modulation of the equivalent width of the emission lines with a period of 23.33 min has been detected. This, together with the strong He ii λ4686 emission characteristic of magnetic systems, leads us to link this period to the spin of a magnetic white dwarf. Similar flaring activity has been recorded in other SW Sex stars, namely, the old nova BT Mon, LS Peg and DW UMa, supporting the idea of these systems being magnetic accretors. Stationary emission features are also observed in the Balmer lines, which we attribute to the ejected nova shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号