首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved version of the 3D stellar reddening map in a space with a radius of 1200 pc around the Sun and within 600 pc of the Galactic midplane is presented. As in the previous 2010 and 2012 versions of the map, photometry with an accuracy better than 0.05 m in the J and Ks bands for more than 70 million stars from the 2MASS catalogue is used in the new version. However, the data reduction technique is considerably more complicated. As before, an analysis of the distribution of stars near the main-sequence turnoff on the (J ? Ks)?Ks diagram, where they form a distribution maximum, provides a basis for the method. The shift of this maximum, i.e., the mode (J ? Ks), along (J ? Ks) and Ks, given the spatial variations of the mean dereddened color (J ? Ks)0 of these stars, is interpreted as a growth of the reddening with increasing distance. The main distinction of the new method is that instead of the fixed mean absolute magnitude, dereddened color, distance, and reddening for each cell, the individual values of these quantities are calculated for each star by iterations when solving the system of equations relating them. This has allowed one to increase the random accuracy of the map to 0.01 m and its spatial resolution to 20 pc in coordinates and distance and to 1° in longitude and latitude. Comparison with other reddening estimates for the same spatial cells and Gaia DR1 TGAS stars shows that the constructed map is one of the best maps for the space under consideration. Its systematic errors have been estimated to be σ(E(J ? Ks)) = 0.025 m , or σ(E(B ? V)) = 0.04 m . The main purpose of the map is to analyze the characteristics of Galactic structures, clouds, and cloud complexes. For this purpose, the reddening map within each spatial cell has also been computed by analyzing the reddening along each line of sight.  相似文献   

2.
The Tycho-2 proper motions and five-band Tycho-2 and 2MASS photometry for approximately 2.5 million common stars have been used to select OB stars and to determine the extinction and photometric distance for each of them. We have selected 37 485 stars and calculated their reddenings based on their positions in the two-color V T -H, J-Ks diagrams relative to the zero-age main sequence and the theoretical reddening line for B5 stars. Tests confirm that the selected stars belong to the spectral types O-B with a small admixture of later types. We calculate the extinction coefficient R and its variations with Galactic longitude based on the positions of the selected stars in the two-color B T -V T , V T -Ks diagram. The interstellar extinction for each star is calculated as the product of the reddening found and the coefficient R. The extinction and its variations with Galactic longitude agree well with the extinction based on the model by Arenou et al. (1992). Calibration of the relation between the absolute magnitude and reduced proper motion V T − + 5 + 5 log μ for Hipparcos stars has allowed us to calculate the absolute magnitudes and photometric distances for the selected stars. The distances found agree with those derived from the Hipparcos parallaxes within 500 pc. The distribution of the stars and the extinction variations with distance found show that the selected stars form an almost complete sample of stars with spectral types earlier than B5 within about 750 pc of the Sun. The sample includes many noticeably reddened stars in the first and second Galactic quadrants that are absent from the Hipparcos and Tycho Spectral Types Catalogues. This slightly changes the pattern of the distribution of OB stars compared to the classical pattern based on Hipparcos. Original Russian Text ? G.A. Goncharov, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 10–20.  相似文献   

3.
The Tycho-2 proper motions and Tycho-2 and 2MASS photometry are used to select 97348 red giant clump (RGC) stars. The interstellar extinction and photometric distance are calculated for each of the stars. The selected stars are shown to form a selection-unbiased sample of RGC stars within about 350 pc of the Sun with the addition of more distant stars. The distribution of the selected stars in space and their motion are consistent with the assumption that the RGC contains Galactic disk stars with various ages and metallicities, including a significant fraction of stars younger than 1 Gyr with masses of more than 2M . These young stars show differences of their statistical characteristics from those of older RGC stars, including differences in the variations of their distribution density with distance from the Galactic plane and in the dispersion of their velocities found using radial velocities and proper motions. The Sun has been found to rise above the Galactic plane by 13 ± 1 pc. The distribution density of the stars under consideration in space is probably determined by the Local Spiral Arm and the distribution of absorbing matter in the plane of the Gould Belt.  相似文献   

4.
We investigate the possibilities for tracing interstellar extinction with the ESA's astrometric space mission GAIA. The analysis is based on detailed simulations of the GAIA photometry, which are used to derive the distribution of interstellar matter in a modelled Galaxy. We find that `small' diffuse clouds (diameter D = 4 pc, E B-V = 0.06) will be easily traced with GAIA up to the distances of ∼ 800 pc. `Large' diffuse interstellar clouds (D = 10 pc, E B-V = 0.13) will be located up to the distances of ∼ 2.5 kpc. This holds for the reddening tracers of spectral types O – K2 brighter than V = 17. Inmost cases, due to their low spatial density, the early type stars (O– A2) cannot provide reliable information about the distribution of interstellar matter. None of the reddening tracers measured by GAIA will provide reliable identification of the individual interstellar clouds beyond the distances of ∼ 3 kpc. Therefore, we conclude that the information available from photometric observations will be not sufficient for the detailed reconstruction of the 3-D distribution of Galactic interstellar matter. It is therefore extremely important to define the new strategies which would allow to combine all the available information, including the earlier space- and/or ground-based investigations, together with the information which will be provided by GAIA itself (parallaxes, E B-V etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Multicolor photometry from the Tycho-2 and 2MASS catalogues for 11 990 OB and 30 671 K-type red giant branch stars is used to detect systematic large-scale variations of the interstellar extinction law within the nearest kiloparsec. The characteristic of the extinction law, the total-to-selective extinction ratio Rv, which also characterizes the size and other properties of interstellar dust grains, has been calculated for various regions of space by the extinction law extrapolation method. The results for the two classes of stars agree: the standard deviation of the “red giants minus OB” Rv differences within 500 pc of the Sun is 0.2. The detected Rv variations between 2.2 and 4.4 not only manifest themselves in individual clouds but also span the entire space near the Sun, following Galactic structures. In the Local Bubble within about 100 pc of the Sun, Rv has a minimum. In the inner part of the Gould Belt and at high Galactic latitudes, at a distance of about 150 pc from the Sun, Rv reaches a maximum and then decreases to its minimum in the outer part of the Belt and other directions at a distance of about 500 pc from the Sun, returning to its mean values far from the Sun. The detected maximum of Rv at high Galactic latitudes is important when allowance is made for the interstellar extinction toward extragalactic objects. In addition, a monotonic increase in Rv by 0.3 per kpc toward the Galactic center has been found near the Galactic equator. It is consistent with the result obtained by Zasowski et al. (2009) for much of the Galaxy. Ignoring the Rv variations and traditionally using a single value for the entire space must lead to systematic errors in the calculated distances reaching 10%.  相似文献   

6.
Photometric data inuvbyß system from 3713 stars is used to map the distribution of colour excesses up to 500 parsec from the Sun, producing diagrams for a series of layers aligned with the galactic plane. Individual clouds are detected, with a mean diameter of 6 parsecs, while cloud complexes have a mean diameter of 100 pc. From the maps it seems that the interstellar medium near the Sun presents regions of non-negligible extinction, while the Sun itself is enbedded in a diffuse cloud, or slightly off its border. The large scatter in the distribution ofE(b-) is confirmed, with a mean extinction ofA v=0 . m 38 up to 500 pc.  相似文献   

7.
A sample of O- and B-type stars with Hipparcos astrometric data, ages computed from Strömgren photometry and radial velocities, has been used to characterize the structure, age and kinematics of the Gould Belt system. The local spiral structure of our galaxy is determined from this sample, and also from a sample of Hipparcos Cepheid stars. The Gould Belt, with an orientation with respect to the galactic plane ofi G = 16-22° and ΩG =275-295°, extends up to a distance of 600 pc from the Sun. Roughly the 60-65% of the O and B stars younger than 60 Myr in the solar neighbourhood belong to this structure. Our results indicate that the kinematical behaviour of this system is complex, with an expansion motion in the solar neighbourhood (R<300 pc).In the frame of the Lin's theory, and analysing the O and B stars further than 600 pc and the Cepheids, we found a galactic spiral structure characterized by a 4-arm spiral pattern with the Sun located atψ = 350-355 ± 30° – near the Sagittarius-Carina arm– and outside the corotation circle. The angular rotation speed of the spiral pattern was found to be Ωp = 31-32 ± 4 kms-1 kpc-1.  相似文献   

8.
The product of the previously constructed 3D maps of stellar reddening (Gontcharov 2010) and Rv variations (Gontcharov 2012) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 50 pc and an accuracy of {ie87-1}. Thismap is compared with the 2D reddening map by Schlegel et al. (1998), the 3D extinction map at high latitudes by Jones et al. (2011), and the analytical extinctionmodels by Arenou et al. (1992) and Gontcharov (2009). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998) reaches saturation near the Galactic equator at E(B - V) > 0.8, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map.  相似文献   

9.
A new analytical 3D model of interstellar extinction within 500 pc of the Sun as a function of the Galactic spherical coordinates is suggested. This model is physically more justified than the widely used Arenou model, since it takes into account the presence of absorbing matter both in the layer along the equatorial Galactic plane and in the Gould Belt. The extinction in the equatorial layer varies as the sine of the Galactic longitude and in the Gould Belt as the sine of twice the longitude in the Belt plane. The extinction across the layers varies according to a barometric law. It has been found that the absorbing layers intersect at an angle of 17° and that the Sun is located near the axial plane of the absorbing layer of the Gould Belt and is probably several parsecs below the axial plane of the equatorial absorbing layer but above the Galactic plane. The model has been tested using the extinction of real stars from three catalogs.  相似文献   

10.
High resolution observations of interstellar Na Iabsorptions in the spectra of early-type stars in the second Galacticquadrant have been used to derive the spatial distribution of thenearby interstellar gas in the Galactic anticentre hemisphere. The datashow the presence, within the region explored and within the nearest150 pc, of eight diffuse interstellar clouds with LSR velocities in therange 15–55 km s-1. Molecular gas previously identified close tothe Sun by Trapero et al. (1995) and Trapero et al. (1996) is embeddedin one of the clouds. The motion of these clouds does not reflect anymotion of the gas away from the Scorpio-Centaurus association, showingthat the kinematics observed in the neighbourhood of the Sun byLallement and Bertin (1992) is restricted, in the second Galactic quadrant,to the nearest 50 pc.  相似文献   

11.
Based on multicolor photometry from the 2MASS and Tycho-2 catalogues, we have produced a sample of 38 368 branch red giants that has less than 1% of admixtures and is complete within 500 pc of the Sun. The sample includes 30 671 K giants, 7544Mgiants, 49 C giants, and 104 suspected supergiants or S stars. The photometric distances have been calculated for K, M, and C stars with an accuracy of 40%. Tycho-2 proper motions and PCRV radial velocities are used to analyze the stellar kinematics. The decrease in the stellar distribution density with distance from the Galactic equator approximated by the barometric law, contrary to the Besanconmodel of the Galaxy, and the kinematic parameters calculated using the Ogorodnikov-Milne model characterize the overwhelming majority of the selected K and M giants as disk stars with ages of more than 3 Gyr. A small number of K and M giants are extremely young or, conversely, thick-disk ones. The latter show a nonuniform distribution in the phase space of coordinates and velocities, arguing against isothermality and full relaxation of the disk and for the theory of dynamical streams or superclusters. The spatial distribution and kinematics of the selected C stars force us to consider them as asymptotic branch giants with masses of more than 2M and ages of less than 2 Gyr probably associated with the Gould Belt. The offset of the Sun above the Galactic equator has been found from the distribution of stars to be 13 ± 2 pc, which coincides with the previously obtained value for the clump red giants.  相似文献   

12.
The joint use of accurate near- and mid-infrared photometry from the 2MASS and WISE catalogues has allowed the variations of the extinction law and the dust grain size distribution in high Galactic latitudes (|b| > 50°) at distances up to 3 kpc from the Galactic midplane to be analyzed. The modified method of extrapolation of the extinction law applied to clump giants has turned out to be efficient for separating the spatial variations of the sample composition, metallicity, reddening, and properties of the medium. The detected spatial variations of the coefficientsE(H ? W1)/E(H ? Ks), E(H ? W2)/E(H ? Ks), and E(H ? W3)/E(H ? Ks) are similar for all high latitudes and depend only on the distance from the Galactic midplane. The ratio of short-wavelength extinction to long-wavelength one everywhere outside the Galactic disk has been found to be smaller than that in the disk and, accordingly, the mean dust grain size is larger, while the grain size distribution in the range 0.5–11 µm is shifted toward coarse dust. Specifically, the mean grain size initially increases sharply with distance from the Galactic midplane, then decreases gradually, approaching a value typical of the disk at |Z| ≈ 2.4 kpc, and, further out, stabilizes or may increase again. The coefficients under consideration change with coordinate Z with a period of about 1312 ± 40 pc, coinciding every 656 ± 20 pc to the south and the north and showing a significant anticorrelation between their values in the southern and northern hemispheres at intermediate Z. Thus, there exists a unified large-scale periodic structure of the interstellar medium at high latitudes within at least 5 kpc. The same periodic variations have also been found for the extinction coefficient R V within 600 pc of the Galactic midplane through the reduction of different photometric data for stars of different classes.  相似文献   

13.
The young open star cluster M25 (IC 4725) is located in the direction of the galactic center, near much irregular absorption features on Sagittarius arm. This system is found to be at a distance of 600 pc, with a median age of 9.45 × 107 years and a distance from the galactic plane of –52.82 pc The mass data available in the literature has been gathered and many statistical methods have been applied for this cluster. Depending only on these methods, the stellar density, the distribution of dark matter, the luminosity and the mass functions have been estimated. The center of the cluster has been defined, it is shifted by 45 arc sec in the northeast direction. The radius of the cluster is found to be 4 pc. More than 220 stars with mean reddening of 0.50 mag and absorption of 1.62mag are found inside this aria. The total mass of the cluster has been estimated with the mass of the interstellar matter (gas and dust). It is found to be 1937 M , whereas about 24% of the material mass of the cluster has remained as interstellar matter after the processes of formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The energy distributions of 85 stars were combined with the transmittance ofB andV tilters and with an interstellar reddening law in order to investigate the effects of the bandwidth on the colour excess and on the ratioR=A v/E(B-V). Since these depend both on the stellar spectral type and on the quantity of absorbing matter, corrective formulae are proposed to allow for these effects.  相似文献   

15.
For at all 24 stars in the field of the heavity reddened open cluster NGC 1502 we obtained UBV and uvby photometry. 19 of these stars we classified definitely as members. From the photometric results we derived 1·1 × 107 years as the cluster age, 960 pc as its distance, and <E(B—V)> = 0·78 mag as mean reddening of the cluster. From the reddening of the foreground stars we evaluated that the intracluster reddening has to be smaller than 0·2 mag. The value of the colour excess ratio E(b—y)/E(B—V) = 0·770 leads us to the conclusion that in the spectra of the cluster stars a very broadband structure (VBS) with a central depth of about 0·04 mag is present.  相似文献   

16.
Lack of reliable estimates of distances to most of the local dark clouds has, so far, prevented a quantitative study of their kinematics. Using a statistical approach, we have been able to extract the average spatial distribution as well as the kinematical behaviour of the local dark clouds from their measured radial velocities. For this purpose, we have obtained radial velocities for 115 southern clouds and used the data from the literature for the northern ones. In this paper we present this new data, analyse the combined data and compare our results with those arrived at by earlier studies. The local clouds are found to be expanding at a speed of ∼ 4 kms-1 which is in general agreement with the estimates from optical and HI studies. However, it is found that the kinematics of the local clouds is not described by the model proposed for the local HI gas where a ring of gas expanding from a point gets sheared by the galactic rotation. Rather, the observed distribution of their radial velocities is best understood in terms of a model in which the local clouds are participating in circular rotation appropriate to their present positions with a small expansion also superimposed. This possibly implies that cloud-cloud collisions are important. The spatial distribution of clouds derived using such a model is in good agreement with the local dust distribution obtained from measurements of reddening and extinction towards nearby stars. In particular, a region of size ∼ 350 pc in diameter enclosing the Sun is found to be devoid of clouds. Intriguingly, most clouds in the longitude range 100‡ to 145‡ appear to have negative radial velocities implying that they are approaching us. Carried out under the auspices of the Joint Astronomy Program, Department of Physics, Indian Institute of Science, Bangalore in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.  相似文献   

17.
Existing photometry for NGC 2264 tied to the Johnson & Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walker's observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of EBV = 0.075 ± 0.003 s.e. and V0MV = 9.45 ± 0.03 s.e. (d = 777 ± 12 pc) are obtained, in conjunction with an inferred cluster age of ∼5.5 × 106 yr from pre‐main‐sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late‐type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B‐type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The Ophiuchus molecular cloud complex has produced in Lynds 1688 the richest known embedded cluster within ∼300 pc of the Sun. Unfortunately, distance estimates to the Oph complex vary by nearly ∼40% (∼120–165 pc). Here I calculate a new independent distance estimate of 135±8 pc to this benchmark star‐forming region based on Hipparcos trigonometric parallaxes to stars illuminating reflection nebulosity in close proximity to Lynds 1688. Combining this value with recent distance estimates from reddening studies suggests a consensus distance of 139±6 pc (4% error), situating it within ∼11 pc of the centroid of the ∼5 Myr old Upper Sco OB subgroup of Sco OB2 (145 pc). The velocity vectors for Oph and Upper Sco are statistically indistinguishable within ∼1 km s–1 in each vector component. Both Oph and Upper Sco have negligible motion (<1 km s–1) in the Galactic vertical direction with respect to the Local Standard of Rest, which is inconsistent with the young stellar groups having formed via the high velocity cloud impact scenario. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Photoelectric Vilnius seven-color photometry is presented and analyzed for a sample of 24 red giant branch and clump stars in the open cluster NGC 7789. For each star we have determined photometric spectral type, absolute magnitude, interstellar reddening, effective temperature, metallicity, and surface gravity. From averages over the stars in the sample we find the mean reddening to the cluster E YV = 0.21± 0.02 (s.d.), or E BV = 0.25, and the apparent distance modulus (mM) V = 12.21± 0.10 (s.d.), which yield a distance of 1840 pc. The mean overall metallicity is found to be [Fe/H] = −0.18± 0.09 (s.d.). The clump stars, on average, appear to be slightly more metal-rich than the other red giants, which is most probably caused by evolutionary changes of carbon and nitrogen molecular bands falling in the photometric passbands. A difference in mass between the two groups of stars has also been detected, which suggests that the clump stars might have undergone extra mass loss before reaching their core He-burning phase of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号