首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coastal marshlands of the Nueces estuary, Texas depend upon periodic freshwater inundation to support current community structure and promote further establishment and expansion of emergent halophytes. Decades of watershed modifications have dramatically decreased freshwater discharge into the upper estuary resulting in hypersaline and dry conditions. In an attempt to partially restore inflow, the U.S. Bureau of Reclamation excavated two overflow channels re-connecting the Nueces River to the marshlands. Freshwater-mediated (precipitation and inflow) changes in tidal creek and porewater salinity and emergent marsh vegetation were examined over a 5-yr period at three stations in the upper Nueces Marsh with the aid of a Geographical Information System (GIS). Two stations were potentially subjected to freshwater inflow through the channels, while one station experienced only precipitation. Decreased tidal creek and porewater salinity were significantly correlated with increased freshwater at all stations (R2=0.37 to 0.56), although porewater salinities remained hypersaline. GIS analyses indicated the most considerable vegetation change following freshwater inundation was increased cover of the annual succulentSalicornia bigelovii. Fall inundation allowed seed germination and rapid expansion of this species into previously bare areas during the subsequent winter and following spring. The station affected by both inflow and precipitation exhibited greaterS. bigelovii cover than the station affected solely by precipitation in both spring 1999 (58. 7% compared to 27.9%) and 2000 (48.6% compared to 1.9%). Percent cover of the perennialBatis maritima temporarily increased after periods of consistent rainfall. The response was short term, and cover quickly returned to pre-inundation conditions within 3 mo. Prolonged inundation led to longterm (>2yr) decreases in percent cover ofB. maritima. Our results suggest that the timing and quantity of freshwater inundation strongly dictate halophyte response to precipitation and inflow. Brief periods of freshwater inundation that occur at specific times of year alleviate stress and promote seed germination and growth, but extended soil saturation can act as a disturbance that has a negative impact on species adapted to hypersaline conditions.  相似文献   

2.
Tidal wetlands are affected by sea level rise. In the tidal freshwater stretches of estuaries in the temperate zone, willows (Salix spp.) form tidal freshwater forests above the mean high water level. Willows tolerance to prolonged periodic flooding in riverine systems is well documented, whereas effects of tidal flooding on willows are largely unknown. Flooding stress may play a major role in regeneration failure of willows in tidal forest stands along estuarine shores, and juvenile willows might be specifically affected by partial or total submergence. To assess the tolerance of juvenile willows to tidal flooding, we conducted a mesocosm experiment with cuttings from Salix alba and Salix viminalis, which are both characteristic species for tidal freshwater forests in Europe. Cuttings originating from either fresh or brackish tidal forest stands were grown under four tidal treatments with up to a tidal flooding of 60 cm. A general tolerance to a tidal flooding of 60 cm was observed in chlorophyll fluorescence, growth rates, and biomass production in both willow species. Overall, S. alba showed higher leaf and shoot growth, whereas S. viminalis produced more biomass. S. alba with brackish origin performed worst with increasing tidal flooding, suggesting a possible pre-weakening due to stressful site conditions in tidal wetlands at the estuarine brackish stretch. This study demonstrates that juvenile willows of S. alba and S. viminalis tolerate tidal flooding of up to 60 cm. It is concluded that tidal inundation acts as a stress by causing submergence and soil anaerobiosis, but may also act as a subsidy by reestablishing aerobic conditions and thus maintaining willows performance. Therefore, we suggest investigations on Salix tidal flooding tolerance and possible effects of willows on tidal wetland accretion under estuarine field conditions.  相似文献   

3.
The establishment of submersed aquatic vegetation (SAV) at unvegetated sites in the freshwater tidal Potomac River was limited primarily by factors other than propagule availability. For two years, traps were used to quantify the amount of plant material reaching three unvegetated sites over the growing season. The calculated flux values provided a gross estimate of the flux of propagules that could potentially survive if other site factors were suitable. The mean flux ofHydrilla verticillata and all other species (≥0.01 gdw m?2 d?1) appeared sufficient to favor the establishment of vegetation, particularly considering the high viability (70–100%) of whole plants and fragments under controlled conditions. However, median water clarity values (i.e., for light attenuation, Secchi depth, total suspended solids, and chlorophylla) were below SAV restoration goals at all unvegetated sites. Additionally, sediments from unvegetated sites showed a potential for nitrogen limitation of the growth ofH. verticillata. Our findings support the hypothesis that in the tidal Potomac River, water clarity and nutrient (especially nitrogen) levels in sediment are key to plant community establishment.  相似文献   

4.
An analysis of data relatingSpartina alterniflora Loisel. to tidal elevations along the Atlantic and Gulf coasts demonstrated that although this species is primarily confined to the intertidal zone, its elevational limits. of occurrence do not correspond to a consistent elevation relative to a tidal datum in all marsh locations. The variation in the vertical distribution of this species reported among marsh studies was attributed primarily to differences in mean tide range (MTR). A positive correlation between MTR and elevational growth range (r=0.91) demonstrated that theSpartina alterniflora zone expands with increasing tidal amplitude. Differences in MTR among marsh locations accounted for 70 and 68% of the statistical variation in the upper and lower limits, respectively, ofS. alterniflora growth. Among marshes of similar tidal amplitudes, the upper limit of occurrence ofS. alterniflora in northern marshes was significantly lower than that in marshes at lower latitudes. These results, in combination with regional differences in plant species distribution across the upper intertidal zone, suggested that some of the variation in the upper limit was due to latitudinal differences in growth conditions and/or differences in interspecific competition. Local and regional differences in other factors such as salinity, nutrients, or physical disturbance may have also contributed to the variation in the limits of growth relative to a tidal plane within and among marshes.  相似文献   

5.
Incubation experiments were adopted to characterize the rates and pathways of iron reduction and the contributions to anaerobic organic matter mineralization in the upper 0–5 cm of sediments along a landscape-scale inundation gradient in tidal marsh sediments in the Min River Estuary, Southeast China. Similar sediment characteristics, single-species vegetation, varied biomass and bioturbation, distinct porewater pH, redox potential, and electrical conductivity values have resulted in a unique ecogeochemical zonation along the inundation gradient. Decreases in solid-phase Fe(III) and increases in nonsulfidic Fe(II) and iron sulfide were observed in a seaward direction. Porewater Fe2+ was only detected in the upland area. High rates of iron reduction were observed in incubation jars, with significant accumulations of nonsulfidic Fe(II), moderate accumulations of iron sulfides, and negligible accumulations of porewater Fe2+. Most of the iron reduction was microbially mediated rather than coupled to reduced sulfides. Microbial iron reduction accounted for 20–89 % of the anaerobic organic matter mineralization along the inundation gradient. The rate and dominance of microbial iron reduction generally decreased in a seaward direction. The contributions of microbial iron reduction to anaerobic organic matter mineralization depended on the concentrations of bioavailable Fe(III), the spatial distribution of which was significantly related to tidal inundation. Our results clearly showed that microbial iron reduction in the upper sediments along the gradient is highly dependent on spatial scales controlled primarily by tidal inundation.  相似文献   

6.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

7.
Salt marshes respond to both slowly increasing tidal inundation with sea level rise and abrupt disturbances, such as storm-induced wrack deposition. The effects of inundation pattern and wrack deposition have been studied independently but not in combination. We manipulated inundation of tidal creek water and wrack presence individually and in combination, in two neighboring communities within a Virginia high salt marsh during 1994 and 1995. The effects of these manipulations were assessed by measurements of aboveground plant biomass. Altered inundation by itself produced little response in the various categories of plant biomass measured. Wrack deposition affected all species (i.e., Juncus roemerianus, Spartina patens, and Distichlis spicata) showing a significant reduction in aboveground biomass, as expected. Recovery after wrack deposition was dependent on the species. S. patens and D. spicata recovered from wrack deposition within one growing season, while J. roemerianus did not. Because the effects of wrack deposition greatly exceeded those of experimentally increased inundation, the possible interactions between the two were masked. Increased inundation may have inhibited the colonization of bare areas by some species after the removal of wrack from an area, although statistical significance at α=0.01 was not reached. Our results confirm that wrack deposition can cause the redistribution of species within the high marsh community. Altered inundation may have a greater effect on the re-establishment of the plant community after wrack deposition than it does without wrack deposition.  相似文献   

8.
Spatial distribution patterns ofScirpus validus were studied in tidal marshes of the lower Savannah River. The hypothesis that changes in spatial pattern forS. validus would accompany differences in environmental parameters was tested by sampling densities and biomass along environmental gradients of salinity and elevation. Coefficients of dispersion were calculated forS. validus and used to compare spatial patterns among freshwater, midly oligohaline, strongly oligohaline, and mesohaline tidal marshes. Results indicated significantly greater clumping ofS. validus in mesohaline marsh than in freshwater marsh. Only the mildly oligohaline site supported a random population ofS. validus, while the strongly oligohaline marsh supported a uniform spatial distribution. Spatial pattern and relative importance ofS. validus, as well as composition of co-occurring species, changed significantly with changing salinity. The relations between changes in relative importance ofS. validus and differences in soil organic matter and elevation were also significant.  相似文献   

9.
Fundulus luciae was collected for a year at Fox Creek Marsh and, occasionally, at other salt marshes along the York River, Virginia. It occurred in high intertidal areas in brackish, sometimes oxygen deficient shallow ditches, mudholes and tidal rivulets located in stands ofSpartina alterniflora. Preserved specimens were examined to determine the reproductive season, fecundity, diet and associated metazoan parasites of the species. Developing ova were present from mid-April to mid-August and exhibited a broad size range; the number of large ova (>1.6 mm diameter) never exceeded 16 per female. Stomach contents consisted mainly of detritus, diatoms, ostracods, dipterans and copepods. All major metazoan parasite groups except Cestoda were represented onF. luciae; Monogenea were most numerous, with 57.2% incidence. Eggs and larvae were described. Preserved larvae ofF. luciae were distinguished from those ofF. heteroclitus by their dorsal pigmentation pattern. It was concluded thatF. luciae, a purportedly rare species, is not rare, but probably restricted to high intertidal salt marshes where it may have been previously overlooked.  相似文献   

10.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

11.
Crabs (Grapsidae,Sesarma) are the dominant macrofaunal group of mangrove forest soils in northern Australia. Little is known about the ecology of these crabs or the factors that influence their distribution in mangrove forests. Pitfall traps were used to sample grapsid crabs in the Murray River estuary in north Queensland. Sampling was conducted at five sites along a salinity gradient from <1‰ at upstream sites to >35‰ at the river mouth. At each site, trapping was done in both low and high intertidal forests. We characterized the sediments at each site by measuring percent sand, silt, clay and organic matter, Eh, pH, and soil pore-water salinity. Four species of grapsids dominated the crab fauna along the Murray River (Sesarma semperi-longicristatum, S. messa, S. brevicristatum, andS. brevipes). Distinct zonation patterns were found along the salinity gradient and between high and low intertidal forests.S. messa was dominant in high intertidal, downstream forests, high and low intertidal forests in the middle to downstream portion of the river, and in low intertidal forests in the central reach of the river.S. brevipes was dominant in both low and high intertidal zone forests at low salinity upstream sites.S. brevicristatum was most abundant in the central reaches of the river and only in the high intertidal zone.S. semperi-longicristatum was found only in the low intertidal zone, downstream forest. Subsequently, tests of salinity tolerances of these crabs were carried out in the laboratory. These indicated very wide tolerances over salinities from completely fresh to hypersaline (60‰). The osmoregulatory abilities of the crabs were also found to vary. However, neither their salinity tolerance nor osmoregulatory ability adequately explain the zonation patterns were measured in the field. For example,S. brevicristatum had the most restricted distribution, but it had the second broadest salinity tolerance and osmoregulatory ability. Sediment characteristics explained a significant amount of the variation in abundance for two of the crab species. Pore-water salinity provided no explanatory power for any of the species. Individual species abundances are probably influenced by additional factors such as interspecific competition and predation.  相似文献   

12.
This paper documents the role of salt marsh algal mats in the productivity of a southern California tidal wetland. The productivity of the mats, which are composed of filamentous bluegreen and green algae and diatoms, varies both temporally and spatially in relation to tidal inundation and overstory vegetation. The estimates of net primary productivity (NPP) were highest under the canopy ofJaumea carnosa (Less.) Gray (341 g C m?2 yr?1) at low elevation. Elsewhere, NPP appeared to be limited by low light (276 g C m?2 yr?1 underSpartina foliosa Trin.) and desiccation (185 g C m?2 yr?1 underBatis martima L. and 253 g C m?2 yr?1 underMonanthochloe littoralis Engelm). Algal NPP was from 0.8 to 1.4 times that of the vascular plant overstory NPP. It is hypothesized that the arid environment of southern California and resulting hypersaline soils reduce vascular plant cover, which leads to high algal productivity.  相似文献   

13.
The zonation of mobile species, such as grazing snails, may be influenced by migration patterns, which often are missed if the population is not sampled within the appropriate temporal scales (i.e., tidal cycles, diurnal periods, seasons). Aspects of community ecology, especially abundance, biodiversity, and habitat preferences, are better described when the mobility of different species or group of organisms also are investigated. The effect of migration on the density and size-frequency distribution of a dominant intertidal grazer (Turbo smaragdus) was investigated across four habitats (mangrove tree, pneumatophore, algal aggregation, and seagrass bed) during emersion and immersion periods at Matapouri Estuary, northern New Zealand, in August 2004 and March 2005. Snails were marked and recaptured to identify their specific movements across the four zones during high and low tide periods. Results from the population surveys and the marked-recaptured experiments indicate that snails migrate upward during high tide and do wnward during low tide. These snail movements appear to be related to improved feeding activity during tidal inundation within macroalgal aggregations in the pneumatophore and algal zones. Large snails (up to 48 mm in width) were predominant in the highest zone among the mangrove trees, where they appear to feed on filamentous algae and microalgae that cover the sediment and plant surfaces in this area. Differences in snail density and sizes between the two sampling months were attributed to reproductive patterns of this species, which result in about 30% more snails (mostly juveniles) during peak reproduction in March.  相似文献   

14.
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year?1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year?1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.  相似文献   

15.
We assess the probability and importance of different spatial distributions ofPhragmites australis (Trin Ex Steud) within brackish tidal marshes of the mid-Atlantic United States coast. The comparative impact ofPhragmites expansion on the larger coupled marsh-estuary system may partially be a function of the landscape area dominated byPhragmites, the landscape position occupied byPhragmites, the landscape pattern created byPhragmites expansions, and the resulting impact on tidal drainage networks. We find evidence thatPhragmites establishment can occur at many landscape positions, and thatPhragmites spread within a marsh can occur via colonization (new patches), linear clonal growth (along a preferred axis), or circular clonal growth (non-directional, random spread). Early intervals ofPhragmites spread were dominated by colonization for all sites except for Piermont Marsh (which appeared to be dominated by linear clonal growth) and Lang Tract (which appeared to be dominated by circular clonal growth). Although 46–100% of new patches ofPhragmites occurred within 5 m of drainages, at only one site (Piermont Marsh, New York) didPhragmites populations remain concentrated along creek banks. Except for Iona Island, New York, which appears to be in an early stage ofPhragmites invasion, patch dynamics at all sites showed an increase followed by a decrease in patch number, as independent patches became established, expanded, and coalesced. We also found some evidence for a loss of first order streams at later stages ofPhragmites invasions in several sites (Hog Island, Lang Tract, Silver Run).  相似文献   

16.
The restoration of a 20 ha tidal marsh, impounded for 32, yr, in Stonington, Connecticut was studied to document vegetation change 10 yr after the reintroduction of tidal flushing. These data were then compared to a 1976 survey of the same marsh when it was in its freshest state and dominanted byTypha angustifolia. Currently,T. angustifolia remains vigorous only along the upland borders and in the upper reaches of the valley marsh. Live coverage ofT. angustifolia has declined from 74% to 16% and surviving stands are mostly stunted and depauperate. Other brackish species have also been adversely effected, except forPhragmites australis which has increased. In contrast, the salt marsh speciesSpartina alterniflora has dramatically expanded, from <1% to 45% cover over the last decade. Locally, high marsh species have also become established, covering another 20% of the marsh.  相似文献   

17.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   

18.
Seasonal changes in aboveground plant biomass, cover, and frequency were monitored in Sweet Hall Marsh, a tidal freshwater marsh located on the Pamunkey River, Virginia, during the 1974 growing season.Peltandra virginica accumulated the most biomass, 423.40 g per m2, followed byLeersia oryzoides at 67.75 g per m2. Annual net community production was estimated to be 775.74 g per m2 by using a multiple-harvest technique. Comparisons with other studies revealed that production was somewhat low for tidal freshwater marshes but mostly higher than production in Virginia brackish and saline wetlands. Measurements revealed an annual succession of plant species from spring to fall. The pattern observed was early dominance byPeltandra followed by a rise in importance ofPolygonum spp.,Impatients capensis andLeersia.  相似文献   

19.
A 1978–81 survey of submersed aquatic macrophytes in the tidal Potomac River showed that there were virtually no plants in the freshwater tidal river between Chain Bridge and Quantico, Virginia, decades after the disappearance of plants in the late 1930’s. Plant populations were monitored in subsequent years (1983–85) using qualitative shoreline surveys and quantitative resampling of the original 1978–81 transects. In 1983, 12 species of submersed aquatic macrophytes were found in the tidal river. Population increases were dramatic; by fall 1985, plants had colonized all shallow areas between Alexandria and Gunston Cove, Virginia.Hydrilla verticillata dominated in Dyke Marsh-Hunting Creek and Swan Creek. Most other areas contained a variable mixture ofHeteranthera dubia, Myriophyllum spicatum, Ceratophyllum demersum, Vallisneria americana, Najas guadalupensis andHydrilla verticillata. No plants were found along the main river or in tidal embayments in the reach between Gunston Cove and Quantico, Virginia. Total dry weight collected in the upper tidal river in fall 1985 was 14.5 times that of spring 1985, and four times that of fall 1984.  相似文献   

20.
The Swartvlei estuary possesses a prolific growth of both intertidal and subtidal eelgrass,Zostera capensis. During 1984 less than 12% of the eelgrass beds were located in the upper half of the estuary, yet deposition ofZostera/macroalgal wrack in this region, when the estuary was linked to the sea (open phase), was similar to that in the lower half. Over a period of 20 semidiurnal tidal cycles there was a net gain of 2.5 tonnes dry mass of plant material into the upper reaches. Export of aquatic macrophytes and filamentous algae from the lower reaches toward the sea over 20 tidal cycles amounted to 1.6 tonnes dry mass. The amount of plant material transported during spring tides was 2 to 3 times greater than that carried during neap tides. Shallowing of the estuary mouth due to sand deposition resulted in a decline in the tidal prism and a decrease in macrodetrital flux. Total export ofZostera and associated algae amounted to 0.87 g ash-free dry mass m?2d?1 and represented a monthly export of 18% ofZostera bed biomass. Deposition of plant wrack during the 1984–1985 closed phase amounted to 63 g dry mass per meter of shore per day at the lower reaches site but only 10 g m?1d?1 was recorded at the upper reaches site. The relatively low latter value was attributed to the absence of tidal action which transports macrodetritus from the lower and middle reaches into the upper part of the system. During the 1984 open phase 70 g m?1d?1 was deposited at the lower reaches site and 68 g m?1d?1 at the upper reaches site. The role of tides in the redistribution of aquatic macrophyte primary production in the Swartvlei estuary was therefore clearly underscored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号