首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
h200l.llNTRODUCTI0NTheNorthwesternWheatandRangeRegi0n(NWax)(Austin,l98l),whichincludesportionsofIdaho,Oregon,andWashington,isoneofthem0stuniqueagriculturalregionsoftheUSA.Winterandspringsmallgrainsand0thercropsareproukcedonl0esss0ilsdepositedoverbasalt.TheloessvariesinboththicknessandtopograPhicfeatures.Someareashavesteepanddune-likeslopes,while0thershavel0ng,gentlesl0pes.Theregion,br0kenfromnativeprairielessthanl20yearsag0(Kaise,l96l)hassufferedseriousdegradationofthesoilresourcebyw…  相似文献   

2.
Over a two-year period, rainfall, runoff and sediment output were measured in six small agricultural catchments (3–10 ha) in south Limburg (The Netherlands). These measurements were needed for validation of an erosion model for South Limburg (LISEM). In this paper, results of the measurements are presented and processes that determine surface runoff and sediment yield during winter and summer rainfall are identified. Before the start of the measurement programme, surface slaking and crust formation on the erodible loess soils were thought to be the main cause of overland flow and soil erosion in South Limburg. This was the starting point for soil conservation measures in the area. The measurement results discussed in this paper show that in some catchments much runoff occurred in winter and that soil moisture storage capacity may be just as important for runoff generation as infiltration capacity. Therefore, when modelling soil erosion and optimizing erosion control measures for South Limburg, runoff generation through Hortonian as well as through saturation overland flow must be considered.  相似文献   

3.
PHYSICALPROCESSBASEDSOILEROSIONMODELINASMALLWATERSHEDINTHEHILLYLOESSREGION1CAIQiangguo2ABSTRACTAphysicalprocesbasedperstorm...  相似文献   

4.
1 INTRODUCTION Soil erosion at the hilly-gully region of the Loess Plateau has obvious vertical erosion zones from watershed boundary to gully edge, i.e., sheet erosion-dominated zone, rill erosion-dominated zone and shallow gully erosion-dominated zone, from top to bottom (Chen et al., 1988). Meanwhile, upslope runoff and sediment have a significant impact on the downslope erosion process. But with the limits of research methods,there is not much data to quantify upslope runoff and sedi…  相似文献   

5.
MODELING EPHEMERAL GULLY EROSION FOR CONSERVATION PLANNING   总被引:9,自引:0,他引:9  
1INTRODUCTIONEphemeral gully erosion,which is caused by concentrated flow within cultivated farm fields,is distinct from rill erosion.Ephemeral gully erosion is also distinct from gully erosion in permanent,deep,incised channels,formed by headcuts moving upstream.Ephemeral gully erosion is often overlooked.It is not estimated with rill-interrill erosion prediction technology such as the Revised Universal Soil Loss Equation(Renard et al.,1997),and it is often not measured in field survey…  相似文献   

6.
To which extent do wildfires affect runoff production, soil erosion and sediment transport in upland catchments? This transient effect is investigated here by combining data of long term precipitation, sediment yield and wildfire records with a fine resolution spatially distributed modeling approach to flow generation and surface erosion. The model accounts for changes in the structure and properties of soil and vegetation cover by combining the tube-flux approach to topographic watershed partition with a parsimonious parametrization of hydrologic processes. This model is used to predict hydrologic and sediment fluxes for nine small catchments in Saint Gabriel mountains of southern California under control (pre-fire) and altered (post-fire) conditions. Simulation runs using a 45 years record of hourly precipitation show the passage of fire to significantly modify catchment response to storms with a major effect on erosion and flood flows. The probability of occurrence of major floods in the post-fire season is shown to increase up to an order of magnitude under same precipitation conditions. Also, the expected anomaly of sediment yield can increase dramatically the desertification hazard in upland wildfire prone areas. One should further consider the role of firefloods produced by the combined occurrence of wildfires and storms as a fundamental source of non-stationarity in the assessment of hydrologic hazard.  相似文献   

7.
1 INTRODUCTION A headcut, which is an abrupt break in the slope of a channel bed, is often called a “knickpoint” or “scarp” in the study of rivers and waterways. A headcut tends to retreat upstream as water flows over it. As a headcut passes a cross s…  相似文献   

8.
I.INTRODUCTIONSoilerosionareasinChinasearchto3.67millionkm'whichoccupies38.2%OfthewholeareainChina.Thesoilerosionregionisspreadingovertheti)holecountry.Amongthat,soilerosionbyrainfallistermedas"watererosion"whichisdistributedinmountainsandhillarea.soilerosionbywindistermedas"winderosion",mainlydistributedinareasalongtheGreatWall,soilerosionbyfreezeandmeltistermedas"freezeerosion",mainlydistributedinhighmountainarea.Inthepastfortyyears,manyintegrateharnessmeasureshavebeenaPPliedindiffer…  相似文献   

9.
1 INTRODUCTION Soil erosion in the foothills of the Hindu Kush-Himalayas (HKH) is considered to be a hot topic in land degradation research in the region (Scherr and Yadav, 1996). The land degradation research has mainly addressed the issue of topsoil los…  相似文献   

10.
1 INTRODUCTION Erosion and sedimentation embody the processes of detachment, transport, and deposition of soil particles. Erosion and subsequent deposition can cause major problems. Erosion reduces productivity of cropland, sediment degrades water quality and may carry soil adsorbed polluting chemicals. Deposition in irrigation canals, stream channels and reservoirs reduces structural capacity and requires costly removal. Ideally, an erosion model should describe the physical processes…  相似文献   

11.
Sedimentation from soil erosion is a critical reservoir watershed management issue. Due to the difficulty of field investigations, empirical formulas are commonly used to estimate the soil erosion rate. However, these estimations are often far from accurate. An effective alternative to estimating soil erosion is to analyze the spatial variation of 137Cs inventory in the soil. 137Cs can be adsorbed by the soil and is widely assumed to change its distribution only when disturbed by rainfall and human activities. Thus, 137Cs distributed in soils can be a useful environmental tracer to estimate soil erosion. In this study, the net soil loss estimate is 108,346 t/yr and the gross erosion and net erosion rates are 10.1 and 9 t/ha yr respectively. The sediment delivery ratio is therefore estimated to be 0.9 based on the two erosion rates. Because of the steep hillsides in the watershed, only 10% of the sediment yield stayed in the deposition sites and 90% was transported to the river as the sediment output. Soil erosion estimates from spatial variations of the 137Cs activity in the Baishi river watershed showed satisfactory accuracy when compared to sediment yield data. Using soil 137Cs concentrations is therefore a feasible method for estimating soil loss or deposition in Taiwan. Data sampling, analysis and result of this approach are given in this paper.  相似文献   

12.
A conceptual modeling framework for developing process-based mathematical models of sediment generation, transport, and deposition on broad shallow flow areas is presented. The governing equations relevant to process-based modeling of broad shallow flow sediment processes on small watersheds are presented and the effects of space and time averaging on the predictive equations are described. Starting from the most general one-dimensional, unsteady model of sediment processes, simpler model structures are obtained and the successive simplifications made on the governing equations in order to obtain simpler and less detailed formulations are described. Specific model formulations are given for illustrative purposes and applications of these models to erosion and sediment yield prediction from broad shallow flow areas are shown using sediment data from rainfall simulator plots. In spite of some progress made in the development of process-based erosion and sediment yield models from broad shallow flow areas, further developmental modeling efforts must be based on a clear separation between hydrologic and hydraulic processes, and the soil properties which are significant for each.  相似文献   

13.
This paper reviews the role of alluvial soils in vegetated gravelly river braid plains. When considering decadal timescales of river evolution, we argue that it becomes vital to consider soil development as an emergent property of the developing ecosystem. Soil processes have been relatively overlooked in accounts of the interactions between braided river processes and vegetation, although soils have been observed on vegetated fluvial landforms. We hypothesize that soil development plays a major role in the transition (speed and pathway) from a fresh sediment deposit to a vegetated soil‐covered landform. Disturbance (erosion and/or deposition), vertical sediment structure (process history), vegetation succession, biological activity and water table fluctuation are seen as the main controls on early alluvial soil evolution. Erosion and deposition processes may not only act as soil disturbing agents, but also as suppliers of ecosystem resources, because of their role in delivering and changing access (e.g. through avulsion) to fluxes of water, fine sediments and organic matter. In turn, the associated initial ecosystem may influence further fluvial landform development, such as through the trapping of fine‐grained sediments (e.g. sand) by the engineering action of vegetation and the deposit stabilization by the developing aboveground and belowground biomass. This may create a strong feedback between geomorphological processes, vegetation succession and soil evolution which we summarize in a conceptual model. We illustrate this model by an example from the Allondon River (Switzerland) and identify the research questions that follow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A computer model has been used to estimate soil loss and sediment yield from irregular field-size units of small watersheds. Input to the model includes spring data (i.e. relating to February through May) for the independent variables of the Universal Soil Loss Equation, and for factors such as surface roughness, an index of overland runoff, and proximity to the stream. Output from the model includes maps of seasonal estimates of potential soil losses, field sediment delivery ratios, and expected sediment yields. On the basis of selected erosion and sediment yield tolerances, the output information has been analysed to identify watershed areas which (1) exhibit both erosion and sediment yield problems; (2) exhibit only erosion problems; (3) exhibit only sediment yield problems; and (4) exhibit neither erosion nor sediment yield problems. The percentage of the watershed area in each category and the percentage of the watershed soil loss and sediment loads contributed by each category are also identified. Application of the procedure for planning remedial control programs for five watersheds is discussed.  相似文献   

15.
Abstract

A relatively simple process-oriented, physically-based distributed (PBD) hydrological model, the distributed runoff and erosion assessment model (DREAM), is described, and a validation study conducted in the semi-forested watershed of Pathri Rao, in the Garhwal Himalayas, India, is reported. DREAM takes account of watershed heterogeneity as reflected by land use, soil type, topography and rainfall, measured in the field or estimated through remote sensing, and generates estimates of runoff and sediment yield in spatial and temporal domains. The model is based on simultaneous solution of flow dynamics, based on kinematic wave theory, followed by solution of soil erosion dynamics. As the storm rainfall proceeds, the process of overland flow generation is dependent on the interception storage and infiltration rates. The components of the soil erosion model have been modified to provide better prediction of sediment flow rates and sediment yields. The validation study conducted to test the performance of the model in simulating soil erosion and sediment yield during different storm events monitored in the study watershed showed that the model outputs are satisfactory. Details of a sensitivity analysis, model calibration and the statistical evaluation of the results obtained are also presented and discussed. It is noteworthy that the distributed nature of the model combined with the use of geographical information system (GIS) techniques permits the computation and representation of the spatial distribution of sediment yield for simulated storm events, and a map of the spatial distribution of sediment yield for a simulated storm event is presented to highlight this capability.

Citation Ramsankaran, R., Kothyari, U.C., Ghosh, S.K., Malcherek, A., and Murugesan, K., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891.  相似文献   

16.
Subsurface flow can be an important process in gully erosion through its impact on decreasing soil cohesion and erosion resistance as soil water content or pressure increases and more directly by the effects of seepage forces on particle detachment and piping. The development of perched water tables fosters lateral flow that can result in seepage at the surface and/or formation of soil pipes by internal erosion of preferential flow paths. Continued internal erosion of soil pipes can lead to gullies, dam and levee failures. However, the processes involved in particle and aggregate detachment from soil pipe walls and transport processes within soil pipes have not been well studied or documented. This paper reviews the limited research on sediment detachment and transport in macropores and soil pipes and applies the knowledge learned from the much more extensive studies conducted on streams and industrial pipes to hydrogeologic conditions of soil pipes. Knowledge gaps are identified and recommendations are made for future research on sediment detachment and transport in soil pipes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical simulation experiments of water erosion at the local scale (20 × 5 m) using a process‐based model [Plot Soil Erosion Model_2D (PSEM_2D)] were carried out to test the effects of various environmental factors (soil type, meteorological forcing and slope gradient) on the runoff and erosion response and to determine the dominant processes that control the sediment yield at various slope lengths. The selected environmental factors corresponded to conditions for which the model had been fully tested beforehand. The use of a Green and Ampt model for infiltration explained the dominant role played by rainfall intensity in the runoff response. Sediment yield at the outlet of the simulated area was correlated positively with rainfall intensity and slope gradient, but was less sensitive to soil type. The relationship between sediment yield (soil loss per unit area) and slope length was greatly influenced by all environmental factors, but there was a general tendency towards higher sediment yield when the slope was longer. Contribution of rainfall erosion to gross erosion was dominant for all surfaces with slope lengths ranging from 4 to 20 m. The highest sediment yields corresponded to cases where flow erosion was activated. An increase in slope gradient resulted in flow detachment starting upstream. Sediment exported at the outlet of the simulated area came predominantly from the zone located near the outlet. The microrelief helped in the development of a rill network that controlled both the ratio between rainfall and flow erosion and the relationship between sediment yield and slope length. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In the rill erosion process, run-on water and sediment from upslope areas, and rill flow hydraulic parameters have significant effects on sediment detachment and transport. However, there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes, especially in the Loess Plateau of China. A dual-box system, consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment, and of rill flow hydraulic parameters on the rill erosion process. The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel, and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity. Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow. Upslope runoff had an important effect on rill flow hydraulic parameters, such as rill flow velocity, hydraulic radius, Reynolds number, Froude number and the Darcy-Weisbach resistance coefficient. The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity, Reynolds number and Froude number caused by upslope runoff increased. In contrast, the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff. These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.  相似文献   

19.
Abstract

Soil erosion and eroded sediment are serious threats to sound land management. However, less attention has been given to quantifying the importance of different soil erosion features based on appropriate control measures that could be designated. Accordingly, this research was planned to quantify the contribution of potential sediment sources, i.e. sheet, rill and gully erosion, in Idelo watershed in Zanjan Province, Iran, using composite fingerprinting. Toward this aim, 16 geochemical and organic tracers were detected in sediment sources and sediment deposited at the outlet. The results of applying the composite fingerprinting technique, with a relative error of 16%, showed that sheet, rill and gully sources contributed 56%, 44% and 0%, respectively, to sediment yield. It was also apparent from the results that the composite fingerprinting approach could be successfully utilized to assess the provenance of sediment deposited at the main outlet of the study watershed by soil erosion type.

Editor Z.W. Kundzewicz  相似文献   

20.
Numerical modeling of gravitational erosion in rill systems   总被引:1,自引:0,他引:1  
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号