共查询到20条相似文献,搜索用时 15 毫秒
1.
《Climate Policy》2013,13(6):669-680
Air quality is a serious concern for the protection of human health and our natural environment. The pollutants contributing the most to both local and transboundary air pollution problems are SO2, NOx, NH3, volatile organic compounds (VOCs), and fine particulate matter (PM), and mostly originate from the same sources as greenhouse gases. There are thus strong interactions between strategies designed to improve air quality and those addressing climate change. This article examines these interactions, and the benefits of combined strategies with greater attention to the overall environmental impacts, and finding the ‘win—win’ solutions. Illustrations are provided from the development of policy in Europe under the UN ECE Convention on Long-Range Transboundary Air Pollution, which is now inextricably linked with strategies to control greenhouse gases. 相似文献
2.
3.
Ocean circulation and climate change 总被引:1,自引:0,他引:1
KLAUS HASSELMANN 《Tellus. Series B, Chemical and physical meteorology》1991,43(4):82-103
4.
Laurent Menut Om P. Tripathi Augustin Colette Robert Vautard Emmanouil Flaounas Bertrand Bessagnet 《Climate Dynamics》2013,40(9-10):2515-2533
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections. 相似文献
5.
6.
Climatic Change - The assessment of ecological impacts of pumped-storage (PS) hydropower plants on the two connected water bodies is usually based on present climatic conditions. However,... 相似文献
7.
8.
A computer simulation model (FINICS) was used to project the interactive effects of CO2-induced climate change on a drought-deciduous shrubland. FINICS simulates the competitive relations of five dominant shrub species of Californian coastal sage scrub, based on their aboveground growth and reproductive behavior. The model was used to simulate the separate and combined effects of altered precipitation, temperature, ambient ozone levels, and fuel loads and fire intensity, on species composition. Both growth chamber and field data were used to parameterize the model. Projections show that changes attributed to climate variation alone were markedly accentuated when the indirect effects of climate change on fire intensity and ozone pollution were considered. Model results emphasized that change in community composition will result from shifting competitive abilities of individual species under the changed environmental conditions. While neither all of the secondary effects of climate change nor all possible species were included in the model, the projections suggest that inclusion of secondary interactions and species competition will be important in predicting vegetation change realistically. 相似文献
9.
针对炼油厂延迟焦化装置排放的冷焦水,采用不同处理方法,并进行环境空气质量影响的预测。结果表明:近年新研制的冷焦水密闭脱臭处理方法是目前最佳的处理手段,可以基本解决焦化装置恶臭污染环境问题。 相似文献
10.
11.
大气混合层高度是影响大气扩散的主要因子之一,其对空气质量评估与污染物的存储量及分布起着重要作用。利用2014年4月至2018年3月珠三角地区香港(沿海站点)和清远(内陆站点)气象探空数据,采用干绝热曲线法估算代表大气垂直方向上大气混合能力的最大混合层高度,探讨沿海与内陆地区混合层高度的差异性,并将最大混合层高度估算值与地面观测的污染物浓度进行相关性分析。结果表明:珠三角沿海与内陆地区的混合层变化具有典型局地特征,沿海日最大混合层高度普遍低于内陆,两地平均高度分别为982 m和1198 m。区域混合层高度的空间差异性由多方面原因造成,其中温度日较差起到关键作用。由于海洋水体的气温调节作用,沿海地区温度日较差较小,因此混合层发展相对较低。珠三角地区各污染物浓度与混合层高度的相关性有较大差异,其中以CO为代表的一次污染物与混合层高度间呈显著负相关,以O3为代表的二次污染物与混合层高度间则呈显著正相关,而颗粒物作为多源性污染物(既有一次排放,又有二次生成),其与混合层高度之间的相关性较弱。 相似文献
12.
Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC
Ellycia R. Harrould-Kolieb 《Climate Policy》2013,13(3):378-389
Ocean acidification and climate change are linked by their common driver: CO2. Climate change is the consequence of a range of GHG emissions, but ocean acidification on a global scale is caused solely by increased concentrations of atmospheric CO2. Reducing CO2 emissions is therefore the most effective way to mitigate ocean acidification. Acting to prevent further ocean acidification by reducing CO2 emissions will also provide simultaneous benefits by alleviating future climate change. Although it is possible that reducing CO2 emissions to a level low enough to address ocean acidification will simultaneously address climate change, the reverse is unfortunately not necessarily true. Despite the ocean's integral role in the climate system and the potentially wide-ranging impacts on marine life and humans, the problem of ocean acidification is largely absent from most policy discussions pertaining to CO2 emissions. The linkages between ocean acidification, climate change and the United Nations Framework Convention on Climate Change (UNFCCC) are identified and possible scenarios for developing common solutions to reduce and adapt to ocean acidification and climate change are offered. Areas where the UNFCCC is currently lacking capacity to effectively tackle rising ocean acidity are also highlighted. 相似文献
13.
We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation. 相似文献
14.
A case study was conducted on the potential impacts of climate change on fish habitat in a southeastern reservoir. A reservoir water quality model and one year of baseline meteorologic, hydrologic, and inflow water quality input were used to simulate current reservoir water quality. Total adult striped bass habitat, defined by specific quantitative temperature and dissolved oxygen criteria, was simulated. Daily reservoir volumes with optimal, suboptimal, and unsuitable temperature and DO were predicted for the year. Output from recent runs of atmospheric general circulation models (GCMs), in which atmospheric carbon dioxide concentrations have been doubled, was then used to adjust the baseline inputs to the water quality model. New sets of input data were created for two grid cells for each of three GCMs. All six climate scenarios are predicted to cause overall declines in the available summer striped bass habitat, mostly due to lake water temperatures exceeding striped bass tolerance levels. These predictions are believed to result from the consensus among GCM scenarios that air temperatures and humidity will rise, and the sensitivity of the reservoir model to these parameters. The reservoir model was found to be a promising tool for examining potential climate-change impacts. Some of the assumptions required to apply GCM output to the reservoir model, however, illustrate the problems in using large-scale gridcell output to assess small-scale impacts. 相似文献
15.
Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate 总被引:1,自引:0,他引:1
The bipolar ocean seesaw is a process that explains the competition between deep waters formed in the North Atlantic (NA) and in the Southern Ocean (SO). In this picture, an increase in the rate of formation of one of these water masses is made at the expense of the other. However, recent studies have questioned the effectiveness of this process. Namely, they show that adding freshwater in the SO can reduce deep water formation in the SO as well as in the NA. In this study, we explore the mechanisms and time scales excited by such a SO freshwater release by performing sensitivity experiments where a freshwater input is added abruptly in the ocean, south of 60°S, with different rates and durations. For this purpose, we evaluate the separate effects of wind, temperature and salinity changes, and we put the emphasis on the time evolution of the system. We find three main processes that respond to these freshwater inputs and affect the NA Deep Water (NADW) production: (i) the deep water adjustment, which enhances the NADW cell, (ii) the salinity anomaly spread from the SO, which weakens the NADW cell, and (iii) the increase in the Southern Hemisphere wind stress, which enhances the NADW cell. We show that process (i) affects the Atlantic in a few years, due to an adjustment of the pycnocline depth through oceanic waves in response to the buoyancy perturbation in the SO. The salinity anomalies responsible for the NADW production decrease [process (ii)] invades the NA in around 30 years, while the wind stress from process (iii) increases in around 20 years after the beginning of the freshwater perturbation. Finally, by testing the response of the ocean to a large range of freshwater release fluxes, we show that for fluxes larger than 0.2 Sv, process (ii) dominates over the others and limits NADW production after a few centuries, while for fluxes lower than 0.2 Sv, process (ii) hardly affects the NADW production. On the opposite, the NADW export is increased by processes (i) and (iii) even for fluxes smaller than 0.1 Sv. The climatic impact of the freshwater release in the SO is mainly a cooling of the Southern Hemisphere, of up to 10°C regionally, which increases with freshwater release fluxes for a large range of values. 相似文献
16.
Because of large economic and environmental asymmetries among world regions and the incentive to free ride, an international climate regime with broad participation is hard to reach. Most of the proposed regimes are based on an allocation of emissions rights that is perceived as fair. Yet, there are also arguments to focus more on the actual welfare implications of different regimes and to focus on a ‘fair’ distribution of resulting costs. In this article, the computable general equilibrium model DART is used to analyse the driving forces of welfare implications in different scenarios in line with the 2?°C target. These include two regimes that are often presumed to be ‘fair’, namely a harmonized international carbon tax and a cap and trade system based on the convergence of per capita emissions rights, and also an ‘equal loss’ scenario where welfare losses relative to a business-as-usual scenario are equal for all major world regions. The main finding is that indirect energy market effects are a major driver of welfare effects and that the ‘equal loss’ scenario would thus require large transfer payments to energy exporters to compensate for welfare losses from lower world energy demand and prices.Policy relevanceA successful future climate regime requires ‘fair’ burden sharing. Many proposed regimes start from ethical considerations to derive an allocation of emissions reduction requirements or emissions allowances within an international emissions trading scheme. Yet, countries also consider the expected economic costs of a regime that are also driven by other factors besides allowance allocation. Indeed, in simplified lab experiments, successful groups are characterized by sharing costs proportional to wealth. This article shows that the major drivers of welfare effects are reduced demand for fossil energy and reduced fossil fuel prices, which implies that (1) what is often presumed to be a fair allocation of emissions allowances within an international emissions trading scheme leads to a very uneven distribution of economic costs and (2) aiming for equal relative losses for all regions requires large compensation to fossil fuel exporters, as argued, for example, by the Organization of Petroleum Exporting Countries (OPEC). 相似文献
17.
Evidence is presented that the recent trend patterns of surface air temperature and precipitation over the land masses surrounding the North Atlantic Ocean (North America, Greenland, Europe, and North Africa) have been strongly influenced by the warming pattern of the tropical oceans. The current generation of atmosphere–ocean coupled climate models with prescribed radiative forcing changes generally do not capture these regional trend patterns. On the other hand, even uncoupled atmospheric models without the prescribed radiative forcing changes, but with the observed oceanic warming specified only in the tropics, are more successful in this regard. The tropical oceanic warming pattern is poorly represented in the coupled simulations. Our analysis points to model error rather than unpredictable climate noise as a major cause of this discrepancy with respect to the observed trends. This tropical error needs to be reduced to increase confidence in regional climate change projections around the globe, and to formulate better societal responses to projected changes in high-impact phenomena such as droughts and wet spells. 相似文献
18.
Shilpa Rao Shonali Pachauri Frank Dentener Patrick Kinney Zbigniew Klimont Keywan Riahi Wolfgang Schoepp 《Global Environmental Change》2013,23(5):1122-1130
Air pollution and its related health impacts are a global concern. This paper addresses how current policies on air pollution, climate change and access to clean cooking fuels can effectively reduce both outdoor and household air pollution and improve human health. A state of the art modeling framework is used that combines an integrated assessment model and an atmospheric model to estimate the spatial extent and distribution of outdoor air pollution exposures. Estimates of household energy access and use are modeled by accounting for heterogeneous household energy choices and affordability constraints for rural and urban populations spanning the entire income distribution. Results are presented for 2030 for a set of policy scenarios on air pollution, climate change and energy access and include spatially explicit emissions of air pollutants; ambient concentrations of PM2.5; and health impacts in terms of disability adjusted life years (DALYs) from both ambient and household air pollution. The results stress the importance of enforcing current worldwide air quality legislation in addressing the impacts of outdoor air pollution. A combination of stringent policies on outdoor air pollution, climate change and access to clean cooking fuels is found to be effective in achieving reductions in average ambient PM2.5 exposures to below World Health Organization recommended levels for a majority of the world's population and results in a significant decline in the global burden of disease from both outdoor and household air pollution. 相似文献
19.
Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America 总被引:1,自引:0,他引:1
Marcelo Barreiro 《Climate Dynamics》2010,35(7-8):1493-1508
We perform a systematic study of the predictability of surface air temperature and precipitation in Southeastern South America (SESA) using ensembles of AGCM simulations, focusing on the role of the South Atlantic and its interaction with the El Niño-Southern Oscillation (ENSO). It is found that the interannual predictability of climate over SESA is strongly tied to ENSO showing high predictability during the seasons and periods when there is ENSO influence. The most robust ENSO signal during the whole period of study (1949–2006) is during spring when warm events tend to increase the precipitation over Southeastern South America. Moreover, the predictability shows large inter-decadal changes: for the period 1949–1977, the surface temperature shows high predictability during late fall and early winter. On the other hand, for the period 1978–2006, the temperature shows (low) predictability only during winter, while the precipitation shows not only high predictability in spring but also in fall. Furthermore, it is found that the Atlantic does not directly affect the climate over SESA. However, the experiments where air–sea coupling is allowed in the south Atlantic suggest that this ocean can act as a moderator of the ENSO influence. During warm ENSO events the ocean off Brazil and Uruguay tends to warm up through changes in the atmospheric heat fluxes, altering the atmospheric anomalies and the predictability of climate over SESA. The main effect of the air–sea coupling is to strengthen the surface temperature anomalies over SESA; changes in precipitation are more subtle. We further found that the thermodynamic coupling can increase or decrease the predictability. For example, the air–sea coupling significantly increases the skill of the model in simulating the surface air temperature anomalies for most seasons during period 1949–1977, but tends to decrease the skill in late fall during period 1978–2006. This decrease in skill during late fall in 1978–2006 is found to be due to a wrong simulation of the remote ENSO signal that is further intensified by the local air–sea coupling in the south Atlantic. Thus, our results suggest that climate models used for seasonal prediction should simulate correctly not only the remote ENSO signal, but also the local air–sea thermodynamic coupling. 相似文献
20.
The impact of Indian Ocean Dipole (IOD) mode events on austral surface air temperature (SAT) variability was studied both by statistical analysis of observed/assimilated data and experiments with a mechanistic baroclinic atmospheric model.During the period of analysis (January 1958–December 1999), IOD events had the strongest impact on SAT anomalies during austral spring and hence, the analysis was focussed on this season. IOD events induced large scale, intercontinental correlations of SAT anomalies amongst Australia, Africa and South America. Surface temperature consistently rose (fell) abnormally and coherently in the subtropical regions of these continents during positive (negative) IOD events. Variability during non-IOD years was considerably weaker than during IOD years over these regions.Analysis of stream function anomalies at the 200 hPa level (source: NCEP/NCAR reanalysis) revealed a Rossby-wave train extending from the eastern Indian Ocean into the subtropical regions of the Pacific and Atlantic oceans. Further, the diagnosed Rossby-wave activity flux emanated from the eastern Indian Ocean and propagated along the subtropical and subpolar jet streams qualitatively in agreement with linear wave dynamics. Experiments with idealized forcing in a primitive equation mechanistic atmospheric model suggested that tropical convective anomalies in the Indian Ocean during IOD events likely affects the austral subtropics through stationary Rossby-wave propagation. 相似文献