首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To evaluate muck sediments as a potential soil amendment, total and Mehlich III-extractable concentrations of Cd, Cu, Cr, Ni, Pb, Zn, and Co in 59 muck sediment samples from the St. Lucie Estuary were analyzed. A seven-step chemical fractionation procedure was used to assess the potential mobility of heavy metals. Except for Cd, the average total concentrations of the metals are lower than the reported average concentrations of these elements in municipal composts in the U.S.A. The concentrations were also below critical levels for the safe use of wastes and byproducts in agriculture, as established by the United States Environmental Protection Agency. The Cd, Cu, Cr, Ni, Pb, Zn and Co in the sediments were predominantly associated with silicate minerals in the residual form. Most metals in the muck sediments occur predominantly in weakly mobile or nonbioavailable forms. Use of mucks in neutral pH upland soils should not pose any significant hazards or risk to the environment. However, Cd, Cu, Cr, Ni, Pb, Zn, and Co, especially Zn, Cu, and Pb, could be more readily released from the muck sediments under acidic soil conditions.  相似文献   

2.
Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.  相似文献   

3.
The concentration and areal distribution of selected metals (Pb, Zn, Cu, Cd, Ni, Fe, and Cr) in the sediments of the Calabar River were studied to determine the extent of anthropogenic input and to estimate the effects of dumping industrial waste materials into the river. The concentrations of Pb, Zn, and Cu indicate relatively moderate pollution mainly on the left-hand side of the river while Ni, Cr, Co, Cd, and Fe levels are below values found to have adverse effects on the lives of marine biota. High metal contents are found close to industrial establishments and so enhanced metal concentrations are related to industrial sewage and metal leaching from garbage and solid waste dumps.  相似文献   

4.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

5.
The concentrations of heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) in 16 samples collected from the lower reach (Changsha–Xiangtan–Zhuzhou section) of the Xiangjiang River in southern China were determined by high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS). Multivariate analysis, such as principal component analysis and cluster analysis, coupled with correlation coefficient analysis, was used to analyze the analytical data and to identify possible pollution sources of heavy metals. The results showed that the eight studied heavy metals accumulated in the sediments from the lower Xiangjiang River, especially Mn, Cu, Zn, Pb and Cd, which were 2.0–2.6, 1.7–2.6, 3.5–3.8, 3.2–3.6 and 189.5–152.8 times the soil trace element background for Hunan Province and UCC background values, respectively. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, revealed that the sediments from lower Xiangjiang River were mainly influenced by two sources: Cr, Co, Ni, Cu, Zn, Cd and Pb mainly originated from industrial sources, whereas Mn was derived from both industrial and natural sources, but mainly from natural sources due to weathering and erosion.  相似文献   

6.
为探讨渤海西部在多重环境因素变化下沉积物中重金属的环境地球化学行为,分析了渤海西部44个站位表层沉积物样品中8种重金属元素含量,研究了重金属元素的分布特征、环境影响因素及其生态风险。结果表明,渤海西部表层沉积物中As、Cu、Cd、Cr、Hg、Ni、Pb、Zn的平均含量分别为117 mg/kg、255 mg/kg、014 mg/kg、689 mg/kg、0037 mg/kg、303 mg/kg、223 mg/kg、757 mg/kg;Cu、Cr、Ni、Zn含量与有机碳含量、小于63 μm细粒沉积物呈显著正相关,其在表层沉积物中的分布明显受到有机质含量和沉积物粒径的控制,而As、Hg分布没有明显受到有机质含量的影响。富集系数显示,Cr、Ni、Pb和Zn为无富集,Cu、As为轻度富集,Cd和Hg为中度富集。与多种背景值和一致性沉积物质量基准相比较,渤海西部表层沉积物Pb、Cd的含量超出背景值,而Cu、Zn、Ni、Cr、As、Hg含量也存在一定的异常,但其含量水平引发有害生物效应的可能性不大,尽管重金属元素含量偏高,但生态风险较小。  相似文献   

7.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

8.
Acid extractable Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb. and Zn were determined in sediments from the Inner Virginia Shelf, and from shipping channels in the lower Chesapeake Bay and Hampton Roads, Virginia, harbor system. Data were evaluated by a variety of techniques Levels of Cd, Cu, Pb, and Zn exceeded average crustal abundances for most of the study sites. Cumulative frequency curves suggested that there were two major populations for all metals and perhaps a third and smaller, one for Cd, Cr, and Mn Plots of metal vs Fe indicated no anthropogenic inputs of metals for shelf and Chesapeake Bay channel sites, but suggested anthropogenic influences for all metals in several of the inshore sites. Enrichment factor calculations showed enrichment of Cd, Pb, and Zn with respect to average crustal abundances for all sites and of Cu for the industrial harbor system. A recommendation of this study for evaluation of environmental geochemical metals data is to utilize mean concentrations, cumulative frequency plots, and metal vs Fe and/or enrichment factor calculations when evaluating the pollution status of sediments.  相似文献   

9.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

10.
In this study, the concentrations of seven heavy metals (As, Cd, Cu, Cr, Ni, Pb, and Zn) in the water, sediments, and nine tissues of eight fish species in Chaohu Lake were detected. And the ecological risk of sediments and food safety caused by heavy metals were evaluated. The mean concentrations of metals (As: 8.21, Cd: 0.58, Cu: 2.56, Cr: 0.50, Ni: 26.47, Pb: 3.51, Zn: 23.05 μg/L) in the water were found lower than the threshold values for the first-grade water quality (China environmental quality standards for surface water). The mean concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 41.79, 19.31, 7.61, 7.09, and 102.85 μg/g, respectively, while the concentration of As and Cd was recorded below the detection limit. The ecological risk assessment demonstrated that metals in the sediments posed low ecological risk. The bioaccumulation of metals in fish tissues showed relatively high concentrations in liver, brain, kidney, and intestines while low levels of metals were detected in muscle. A fascinating phenomenon was firstly noticed that all metals highly existed in fish brain and exhibited an especially significant positive correlation with the metal concentrations in sediment, indicating a health risk for Chinese due to their consumption favor of fish head.  相似文献   

11.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

12.
The dust samples from 30 gas stations located in Xi’an are analyzed for Mn, Ni, Co, Cr, Cu, Cd, Pb and Zn by using atomic absorption spectrometry. The concentration, spatial distribution, source and the contamination levels provide scientific basis for urban planning and environmental renovation in Xi’an. The results indicate that the mean values of Ni, Cr, Co, Cu, Pb, Zn and Cd in the dust are 1.15, 1.19, 8.13, 3.94, 4.42, 5.09 and 15.62 times higher than the corresponding background values of Shaanxi soil, respectively. The high concentration of heavy metals is located in the inner and second ring road of Xi’an, China. Furthermore, the contents of metals in the south are higher than in the north. In addition, the concentrations of the gas station dust metals in the west are higher than in the east, particularly in the southwest. Three main sources of heavy metals of gas station dusts are identified in Xi’an. Mn and Ni mainly originate from a natural source; Cr, Cu, Pb, Cr and Zn mainly originate from traffic flow; and Co is mainly from industrial sources. The results of the potential ecological risk assessment indicate that the potential ecological risk index (RI) of Co is moderate; Cd is very high ecological risk, and the other analyzed metals belong to low ecological risk. The mean RI value of eight heavy metals in the gas station dusts from Xi’an is considerable ecological risk.  相似文献   

13.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

14.
Chabahar Bay in SE of Iran is a shallow semi-enclosed environment affected by anthropogenic activities. In this paper, 19 sediment samples were collected and concentration of selected metals (Cu, Pb, Zn, Cd, Ni, Cr, Co, V and Fe) was determined using ICP-MS analytical method. Sediment samples from five stations were also selected for sequential extraction analysis and concentration of metals in each fraction was determined using ICP-OES. In order to investigate the environmental quality of Chabahar Bay, geographic information system (GIS) along with geochemical data, environmental indices and statistical analyses were used. Calculated contamination degree (Cd) revealed that most contaminated stations (Ch3, S1 and S3) are located SE of Chabahar Bay and contamination decreases in a NW direction. The S9 station, west of the bay, is also contaminated. High organic matter (OM) content in the sediments is most likely the result of fuel and sewage discharge from fishing vessels along with discharge of fishing leftovers. Significant correlation coefficient among OM, Fe, Cu, Pb, Zn and Cd seemingly reflects the importance of the role that OM and Fe oxy-hydroxides play in the metals mobility. The results of hierarchical cluster analysis (HCA), computed correlation coefficient and sequential extraction analysis suggest that Cu, Pb, Zn and Cd probably come from antifouling and sea vessel paints, while Ni, Cr, Co, V and Fe are most likely contributed by ophiolitic formations located north of the bay and/or deep sea sediments. Average individual contamination factors (ICFs) indicated that the highest health hazard from the bay is posed by Cu, Pb and Zn.  相似文献   

15.
Analysis of ten heavy metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in six sediment cores from Wellington Harbour show both anthropogenic enrichments and diagenetic modifications. Absolute concentrations determined by two methods, x-ray fluorescence and acid leaching for bioavailability, are not comparable. However, vertical trends in concentrations of the cored sediment are comparable. To assess levels of anthropogenic pollution, enrichment factors (enriched concentrations in upper core divided by background levels in lower core) are preferred over index of accumulation (I geo) values because preindustrial or background levels of heavy metals are well constrained. The ten metals are placed into three groups: (1) Cu, Pb, and Zn, which show the most anthropogenic enrichment; (2) As, Cd, Cr, Ni, and Sb, which are often associated with anthropogenic pollution but show only minor enrichment; and (3) Fe and Mn, which are diagenetically enriched. Assuming harbor waters are well mixed, anthropogenic enrichments of Cu, Pb, and Zn, are time correlative, but the degree of enrichment depends on the method of analysis and core location. Levels of As, Cd, Pb, and Zn show small variations in preindustrial sediments that are not related to changes in grain size and probably result from changes in the oxidation-reduction potential of the sediments and salinity of the pore waters.  相似文献   

16.
青岛胶州湾沉积物痕量元素黄铁矿化程度及其剖面类型   总被引:4,自引:0,他引:4  
为了探索青岛近海不同沉积环境下不同痕量元素的黄铁矿化规律, 2003年5月潜水员潜入海底采集了4个不同沉积环境的未扰动柱样, 并利用Huerta-Diaz and Morse (1990)连续提取技术测试分析了沉积物痕量金属的不同存在形式(活性态和黄铁矿结合态) 在垂直剖面上的分布规律.结果表明: 除了在涨潮三角洲上部沉积和潮下带沉积物柱子的Cd和Cr外, 痕量元素的黄铁矿化度的增高取决于其相应剖面上的DOP的增高; 并且不同痕量元素向黄铁矿中转移的规模存在着较大的差别, 即元素As、Hg和Mo转移的规模最大, Cu、Zn、Cd、Cr、Co和Ni中等, Pb和Mn最小; 此外, 还进一步揭示了河流三角洲沉积物的下部各元素的黄铁矿化程度高, 而潮下带沉积物以及涨潮三角洲沉积物低.最后指出在河口水下三角洲进行的清淤工作应注意黄铁矿结合态痕量元素的活化而产生生物有效的毒性元素.   相似文献   

17.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

18.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

19.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

20.
Heavy metal contamination in polished rice grains collected from Hunan Province, Southern China, has been investigated in this study. The concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in rice were determined by microwave-assisted digestion and inductively coupled plasma-mass spectrometry method. In order to evaluate the correlations among heavy metals, statistical analyses including Pearson’s correlation analysis, principal component analysis and hierarchical cluster analysis were performed. Three distinct clusters were classified by the hierarchical cluster analysis approach. In the principal component analysis, three principle components were extracted with the eigenvalue >1.0. The spatial distribution of heavy metals was predicted by the ordinary kriging interpolation. Cu and Ni with similar distribution patterns could be primarily originated from geogenic source. The hot-spot areas in the distribution patterns of Mn, Pb and Zn could be mainly related to mining and smelting activities. Cd and Co might be derived from the combination of natural existence and anthropogenic sources. The chronic non-carcinogenic effect on local rice consumers from exposure to heavy metals was estimated by the target hazard quotient. The average target hazard quotient values of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were 1.754, 0.367, 0.003, 0.544, 0.165, 0.775, 0.228, 0.049 and 0.481, respectively. The target hazard quotient value of Cd exceeded the threshold value suggesting high potential health risk to residents in Hunan Province through rice consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号