首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Pine Canyon caldera is a small (6–7 km diameter) ash-flow caldera that erupted peralkaline quartz trachyte, rhyolite, and high-silica rhyolite lavas and ash-flow tuffs about 33–32 Ma. The Pine Canyon caldera is located in Big Bend National Park, Texas, USA, in the southern part of the Trans-Pecos Magmatic Province (TPMP). The eruptive products of the Pine Canyon caldera are assigned to the South Rim Formation, which represents the silicic end member of a bimodal suite (with a “Daly Gap” between 57 and 62 wt.% SiO2); the mafic end member consists primarily of alkali basalt to mugearite lavas of the 34–30 Ma Bee Mountain Basalt. Approximately 60–70% crystallization of plagioclase, clinopyroxene, olivine, magnetite, and apatite from alkali basalt coupled with assimilation of shale wall rock (Ma/Mc = 0.3–0.4) produced the quartz trachyte magma. Variation within the quartz trachyte–rhyolite suite was the result of 70% fractional crystallization of an assemblage dominated by alkali feldspar with subordinate clinopyroxene, fayalite, ilmenite, and apatite. High-silica rhyolite is not cogenetic with the quartz trachyte–rhyolite suite, and can be best explained as the result of  5% partial melting of a mafic granulite in the deep crust under the fluxing influence of fluorine. Variation within the high-silica rhyolite is most likely due to fractional crystallization of alkali feldspar, quartz, magnetite, biotite, and monazite. Lavas and tuffs of the South Rim Formation form A-type rhyolite suites, and are broadly similar to rock series described in anorogenic settings both in terms of petrology and petrogenesis. The Pine Canyon caldera is interpreted to have developed in a post-orogenic tectonic setting, or an early stage of continental rifting, and represents the earliest evidence for continental extension in the TPMP.  相似文献   

2.
In the westernmost Superior Province of Canada, the east–west alignment of granite–greenstone belts and the adjacent, highly deformed gneiss belts led to the first proposals that plate tectonics existed before 2.5 Ga ago, with the belts thrust against one another by east–west-oriented subduction zones. Here, we present seismic reflection data, which demonstrate that in this region the present juxtaposition of the Uchi granite–greenstone belt and the North Caribou gneiss terrane occurred along a late southeast-dipping extensional shear zone that extends from the surface into the lower crust. The preservation of the Uchi belt and probably the English River metasedimentary belt is directly related to their dropping along extensional shear zones, which limited subsequent erosion. The relative lateral transport of these greenstone rocks implies that they were neither derived from the immediately underlying crust, nor preserved by vertical crustal movements as might occur in the absence of plate tectonics. Extension may have been associated with the emplacement of mantle-derived magmas at 2700 Ma, which has been linked to slab break-off or lithospheric delamination, making the extension approximately coeval with local gold mineralisation. Since crustal-scale faults can facilitate the circulation of gold-bearing fluids, we suggest that greenstone rocks preserved in the hanging walls of syn- to post-accretion extensional shear zones may preferentially host Archean lode-gold deposits. In the westernmost Superior Province, our seismic observations imply that some of the late structures in the well-developed belts defined by surface mapping arose through the collapse of a collage of laterally accreted terranes.  相似文献   

3.
We present 3-D deformation–fluid-flow numerical models which place constraints on the importance of basalt dome shape and syn-mineralising shortening direction in localising structurally controlled gold mineralisation around basalt domes near Stawell, Victoria, Australia. Gold mineralisation in the Magdala ore-body at the Stawell Mine occurs predominantly within a thin altered unit named the Magdala Facies which blankets the basalt domes. In numerical models of the Magdala Dome models only the east–northeast–west–northwest and east–west shortened models record high fluid-flow rates in areas of known mineralisation which is consistent with the syn-mineralisation shortening directions. In models of the Kewell Dome (a prospect to the north), the position of areas of high fluid-flow rate when shortened in the east–northeast–west–northwest and east–west direction, combined with information from limited drilling indicated the potential for gold mineralisation at the south-west end of the dome. Diamond drill holes in this area yielded significant gold values.  相似文献   

4.
Integrated studies and revisions of sedimentary basins and associated magmatism in Peru and Bolivia (8–22°S) show that this part of western Gondwana underwent rifting during the Late Permian–Middle Jurassic interval. Rifting started in central Peru in the Late Permian and propagated southwards into Bolivia until the Liassic/Dogger, along an axis that coincides with the present Eastern Cordillera. Southwest of this region, lithospheric thinning developed in the Early Jurassic and culminated in the Middle Jurassic, producing considerable subsidence in the Arequipa basin of southern Peru. This 110-Ma-long interval of lithospheric thinning ended 160 Ma with the onset of Malm–earliest Cretaceous partial rift inversion in the Eastern Cordillera area.The lithospheric heterogeneities inherited from these processes are likely to have largely influenced the distribution and features of younger compressional and/or transpressional deformations. In particular, the Altiplano plateau corresponds to a paleotectonic domain of “normal” lithospheric thickness that was bounded by two elongated areas underlain by thinned lithosphere. The high Eastern Cordillera of Peru and Bolivia results from Late Oligocene–Neogene intense inversion of the easternmost thinned area.  相似文献   

5.
Subsidence mechanisms that may have controlled the evolution of the eastern Black Sea have been studied and simulated using a numerical model that integrates structural, thermal, isostatic and surface processes in both two- (2-D) and three-dimensions (3-D). The model enables the forward modelling of extensional basin evolution followed by deformation due to subsequent extensional and compressional events. Seismic data show that the eastern Black Sea has evolved via a sequence of interrelated tectonic events that began with early Tertiary rifting followed by several phases of compression, mainly confined to the edges of the basin. A large magnitude (approximately 12 km) of regional subsidence also occurred in the central basin throughout the Tertiary. Models that simulate the magnitude of observed fault controlled extension (β=1.13) do not reproduce the total depth of the basin. Similarly, the modelling of compressional deformation around the edges of the basin does little to enhance subsidence in the central basin. A modelling approach that quantifies lithosphere extension according to the amount of observed crustal thinning and thickening across the basin provides the closest match to overall subsidence. The modelling also shows that deep crustal and mantle–lithosphere processes can significantly influence the rate and magnitude of syn- to post-rift subsidence and shows that such mechanisms may have played an important role in forming the anomalously thin syn-rift and thick Miocene–Quaternary sequences observed in the basin. It is also suggested that extension of a 40–45 km thick pre-rift crust is required to generate the observed magnitude of total subsidence when considering a realistic bathymetry.  相似文献   

6.
The Glueckstadt Graben is one of the deepest post-Permian structures within the Central European Basin system and is located right at its “heart” at the transition from the North Sea to the Baltic Sea and from the Lower Saxony Basin to the Rynkoebing–Fyn High.The Mesozoic to recent evolution is investigated by use of selected seismic lines, seismic flattening and a 3D structural model. A major tectonic event in the latest Middle–Late Triassic (Keuper) was accompanied by strong salt tectonics within the Glueckstadt Graben. At that time, a rapid subsidence took place within the central part, which provides the “core” of the Glueckstadt Graben. The post-Triassic tectonic evolution of the area does not follow the typical scheme of thermal subsidence. In contrast, it seems that there is a slow progressive activation of salt movements triggered by the initial Triassic event. Starting with the Jurassic, the subsidence centre partitioned into two parts located adjacent to the Triassic “core.” In comparison with other areas of the Central European Basin system, the Glueckstadt Graben was not strongly affected by additional Jurassic and Cretaceous events. During the late Jurassic to Early Cretaceous, the area around the Glueckstadt Graben was affected by relative uplift with regional erosion of the elevated relief. However, subsidence was reactivated and accelerated during the Cenozoic when a strong subsidence centre developed in the North Sea. During Paleogene and Quaternary–Neogene, the two centres of sedimentation moved gradually towards the flanks of the basin.The data indeed point toward a control of post-Permian evolution by gradual withdrawal of salt triggered by the initial exhaustion along the Triassic subsidence centre. In this sense, the Glueckstadt Graben was formed at least partially as “basin scale rim syncline” during post-Permian times. The present day Hamburger, East and Westholstein Troughs are the actual final state of this long-term process which still may continue and may play a role in terms of young processes and, e.g., for coastal protection.  相似文献   

7.
伸展型盆地是与地壳和岩石圈伸展、减薄作用有关的一类裂陷盆地,包含了重要的沉积矿产和能源资源。综合近年来国内外伸展型盆地的研究,包括大西洋被动大陆边缘、澳大利亚被动边缘以及中国大陆东部的新生代盆地,发现不论是被动边缘还是会聚板块背景下的伸展型盆地,其裂后阶段盆地的沉降过程都不是简单的仅仅由岩石圈的热作用所控制的均匀缓慢的沉降过程,而是呈现多幕式的、快速沉降的特征,反映了盆地裂后演化阶段周缘板块的构造活动及其深部岩石圈的动力因素的控制作用。文章正是从这一角度出发,简述了近年来国内外一些典型的伸展盆地区裂后期快速沉降的研究进展情况,并结合琼东南盆地裂后期沉降演化特征的定量模拟研究,对幕式快速沉降的动力学机制进行了探讨。  相似文献   

8.
Ambrym is one of the most voluminous active volcanoes in the Melanesian arc. It consists of a 35 by 50 km island elongated east–west, parallel with an active fissure zone. The central part of Ambrym, about 800 m above sea level, contains a 12 kilometre-wide caldera, with two active intra-caldera cone-complexes, Marum and Benbow. These frequently erupting complexes provide large volumes of tephra (lapilli and ash) to fill the surrounding caldera and create an exceptionally large devegetated plateau “ash plain”, as well as sediment-choked fluvial systems leading outward from the summit caldera. Deposits from fall, subordinate base surge and small-volume pyroclastic (scoria) flows dominate the volcaniclastic sequences in near vent regions. Frequent and high-intensity rainfall results in rapid erosion of freshly deposited tephra, forming small-scale debris flow- and modified grain flow-dominated deposits. Box-shaped channel systems are initially deep and narrow on the upper flanks of the composite cones and are filled bank-to-bank with lapilli-dominated debris flow deposits. These units spill out into larger channel systems forming debris aprons of thousands of overlapping and anastomosing long, narrow lobes of poorly sorted lapilli-dominated deposits. These deposits are typically remobilised by hyperconcentrated flows, debris-rich stream flows and rare debris flows that pass down increasingly shallower and broader box-shaped valleys. Lenses and lags of fines and primary fall deposits occur interbedded between the dominantly tabular hyperconcentrated flow deposits of these reaches. Aeolian sedimentation forms elongated sand dunes flanking the western rim of the ash-plain. Outside the caldera, initially steep-sided immature box-canyons are formed again, conveying dominantly hyperconcentrated flow deposits. These gradually pass into broad channels on lesser gradients in coastal areas and terminate at the coast in the form of prograding fans of ash-dominated deposits. The extra-caldera deposits are typically better sorted and contain other bedding features characteristic of more dilute fluvial flows and transitional hyperconcentrated flows. These outer flank volcaniclastics fill valleys to modify restricted portions of the dominantly constructional landscape (lava flows, and satellite cones) of Ambrym. Apparent maturity of the volcanic system has resulted in the subsidence of the present summit caldera at a similar rate to its infill by volcaniclastic deposits.  相似文献   

9.
We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. The eastern Korean margin is rimmed by fundamental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau that is a continental fragment extended and partially segmented from the Korean Peninsula. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and considerably symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions for rifting are recognized: the Onnuri and Hupo Basins were rifted in the east-west direction; the Bandal Basin in the east–west and northwest–southeast directions, suggesting two rift stages. We interpret that the east–west direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated southeastward repeatedly from the Japan Basin toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed the direction to the south, resulting in east–west extension to create the rift basins at the Korean margin. The northwest–southeast direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the Korea Plateau; after breakup the southwestern Japan Arc separated in the southeast direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the northwest direction. No significant volcanism was involved in initial rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.  相似文献   

10.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   

11.
Numerous ge ological and geophysical investigations within the past decades have shown that the Rhinegraben is the most pronounced segment of an extended continental rift system in Europe. The structure of the upper and lower crust is significantly different from the structure of the adjacent “normal” continental crust.

Two crustal cross-sections across the central and southern part of the Rhinegraben have been constructed based on a new evaluation of seismic refraction and reflection measurements. The most striking features of the structure derived are the existence of a well-developed velocity reversal in the upper crust and of a characteristic cushion-like layer with a compressional velocity of 7.6–7.7 km/sec in the lower crust above a normal mantle with 8.2 km/sec. Immediately below the sialic low-velocity zone in the middle part of the crust, an intermediate layer with lamellar structure and of presumably basic composition could be mapped.

It is interesting to note that the asymmetry of the sedimentary fill in the central Rhinegraben seems to extend down deeper into the upper crust as indicated by the focal depths of earthquakes. The top of the rift “cushion” shows a marked relief which has no obvious relation to the crustal structure above it or the visible rift at the surface.  相似文献   


12.
In order to understand the origin of long-lived loci of volcanism (sometimes called “hot spots”) and their possible role in global tectonic processes, it is essential to know their deep structure. Even though some work has been done on the crustal, upper-mantle, and deep-mantle structure under some of these “hot spots”, the picture is far from clear. In an attempt to study the structure under the Yellowstone National Park U.S.A., which is considered to be such a “hot spot”, we recorded teleseisms using 26 telemetered seismic stations and three groups of portable stations. The network was operated within a 150 km radius centered on the Yellowstone caldera, the major, Quaternary volcanic feature of the Yellowstone region. Teleseismic delays of about 1.5 sec are found inside the caldera, and the delays remain high over a 100 km wide area around the caldera. The spatial distribution and magnitude of the delays indicate the presence of a large body of low-velocity material with horizontal dimensions corresponding approximately to the caldera size (40 km × 80 km) near the surface and extending to a depth of 200–250 km under the caldera. Using ray-tracing and inversion techniques, it is estimated that the compressional velocity inside the anomalous body is lower than in the surrounding rock by about 15% in the upper crust and by 5% in the lower crust and upper mantle. It is postulated that the body is partly composed of molten rock with a high degree of partial melting at shallow depths and is responsible for the observed Yellowstone volcanism. The large size of the partially molten body, taken together with its location at the head of a 350 km zone of volcanic propagation along the axis of the Snake River Plain, indicates that the volcanism associated with Yellowstone has its origin below the lithosphere and is relatively stationary with respect to plate motion. Using our techniques, we are unable to detect any measurable velocity contrast in the mantle beneath the low-velocity body, and, hence, we are unable to determine whether the Yellowstone melting anomaly is associated with a deep heat source or with any deep phenomenon such as a convection plume, chemical plume, or gravitational anchor.  相似文献   

13.
The Roer Valley Rift System (RVRS) is located between the West European rift and the North Sea rift system. During the Cenozoic, the RVRS was characterized by several periods of subsidence and inversion, which are linked to the evolution of the adjacent rift systems. Combination of subsidence analysis and results from the analysis of thickness distributions and fault systems allows the determination of the Cenozoic evolution and quantification of the subsidence. During the Early Paleocene, the RVRS was inverted (Laramide phase). The backstripping method shows that the RVRS was subsequently mainly affected by two periods of subsidence, during the Late Paleocene and the Oligocene–Quaternary time intervals, separated by an inversion phase during the Late Eocene. During the Oligocene and Miocene periods, the thickness of the sediments and the distribution of the active faults reveal a radical rotation of the direction of extension by about 70–80° (counter clockwise). Integration of these results at a European scale indicates that the Late Paleocene subsidence was related to the evolution of the North Sea basins, whereas the Oligocene–Quaternary subsidence is connected to the West European rift evolution. The distribution of the inverted provinces also shows that the Early Paleocene inversion (Laramide phase) has affected the whole European crust, whereas the Late Eocene inversion was restricted to the southern North Sea basins and the Channel area. Finally, comparison of these deformations in the European crust with the evolution of the Alpine chain suggests that the formation of the Alps has controlled the evolution of the European crust since the beginning of the Cenozoic.  相似文献   

14.
The Donbas Foldbelt is part of the Prypiat–Dnieper–Donets intracratonic rift basin (Belarus–Ukraine–southern Russia) that developed in Late Devonian times and was reactivated in Early Carboniferous. To the southeast, the Donbas Foldbelt joins the contiguous, deformed Karpinsky Swell. Basin “inversions” led first to the uplift of the Palaeozoic series (mainly Carboniferous but also syn-rift Devonian strata in the southwesternmost part of the Donbas Foldbelt, which are deeply buried in the other parts of the rift system), and later to the formation of the fold-and-thrust belt. The general structural trend of the Donbas Foldbelt, formed mainly during rifting, is WNW–ESE. This is the strike of the main rift-related fault zones and also of the close to tight “Main Anticline” of the Donbas Foldbelt that developed along the previous rift axis. The Main Anticline is structurally unique in the Donbas Foldbelt and its formation was initiated in Permian times, during a period of (trans) tensional reactivation, during which active salt movements occurred. A relief inversion of the basin also took place at this time with a pronounced uplift of the southern margin of the basin and the adjacent Ukrainian Shield. Subsequently, Cimmerian and Alpine phases of tectonic inversion of the Donbas Foldbelt led to the development of flat and shallow thrusts commonly associated with folds into the basin. A fan-shaped deformation pattern is recognised in the field, with south-to southeast-vergent compressive structures, south of the Main Anticline, and north- to northwest-vergent ones, north of it. These compressive structures are clearly superimposed onto the WNW–ESE structural grain of the initial rift basin. Shortening structures that characterise the tectonic inversion of the basin are (regionally) orientated NW–SE and N–S. Because of the obliquity of the compressive trends relative to the WNW–ESE strike of inherited structures (major preexisting normal faults and the Main Anticline), in addition to reverse displacements, right lateral movements occurred along the main boundary fault zones and along the faulted hinge of the Main Anticline. The existence of preexisting structures is also thought to be responsible for local deviations in contractional trends (that are E–W in the southwesternmost part of the basin).  相似文献   

15.
Individual Pennsylvanian clastic sediment intervals above the Seelyville Coal were examined on electric logs from Sullivan County, Indiana, U.S.A. for vertical sequence, interval thickness, and sand content. This information was used to evaluate local variability of this area of the Illinois Basin depositional system.Each clastic interval is composed of a lateral association of vertical sequences of sediments, bounded above and below by a thin association of coal, limestone, black shale, and/or underclay. An “average” constructive clastic unit is characterized by the following thickness parameters: mean , standard deviation (s) = 3.4 m, minimum = 6.1 m, and
sand content, as measured by electric log resistivity, is 37%.Clastic sediment intervals characterized as “deep water” sediments tend to be clayrich, have the greatest lateral continuity, are composed of 50% to 90% coarsening upward sequences, are comprised of less than 16% fining upward sequences, and are composed of less than 10% of sequences of facies which are transitional between coarsening and fining upward. Sandstone channels are linear to coarsely dendritic and probably postdate lower portions of the coarsening upward sequences. One example of longshore shoaling between the Springfield and Houchin Creek coals was discovered. This is the youngest stratigraphic evidence of longshore currents in Illinois Basin clastic sediments. This milieu probably represents a distal delta position.Shallow-water sediments are sand-rich, complex, and gradational. They tend to be interfingered and to display poor lateral continuity. Coarsening upward sequences comprise less than 20% of the data sites. Fining upward fluvial sequences are represented by well-developed dendritic map patterns and constitute 20–30% of the sites. Transitional sequences between coarsening and fining upward log profiles are represented by both interfingered and gradational sequences and constitute 20–55% of the sites.Each constructive vertical sequence represents only a portion of the overall progradational deltatic environment.Destructive linear erosional channels are oriented downdip into the basin. The first occurrence in Indiana of the Trivoli Sandstone channel facies, located between the Ditney and West Franklin horizons, was delineated. Destructive channel sands are found commonly between the Houchin Creek and Colchester coals.Clastic subintervals locally began to develop when compacted unit thickness exceeded 18 m.Average regional wedging contributes 0.13 m/km to local sediment interval thickness variability. The average compacted clastic interval thickness has a local range of 19 m owing to local depositional environments. This variation is related closely to the overall clastic ratio of end-member sequences which are situated in close proximity. The average clastic unit varies in thickness of ± 1.4 m owing to the influence of compaction of the underlying Pennsylvanian sediment filling the Mississippian unconformity valleys. Compactional effects between clastic units become negligible as composite interval thickness exceeds 30 m.  相似文献   

16.
昆仑--秦岭造山系的几个问题   总被引:18,自引:4,他引:18  
昆仑-秦岭带加里东旋回的洋盆不是从元古代继承下来的.而是由寒武纪裂谷发展而来的,它在志留纪即宣告封闭;昆仑石炭纪一二叠纪海底裂谷带或可能的小洋盆,在晚二叠世前已经消失,三纪时昆仑-秦岭带只有海,而没有洋。因此,印支造山运动并不是洋盆消失后的陆-陆碰撞造山,而是陆-陆叠复造山(大陆壳消减造山)作用。  相似文献   

17.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

18.
以滇中新元古代裂谷盆地沉积充填为研究对象,开展了系统的沉积学和盆地分析研究。结果表明,滇中新元古代裂谷盆地具有4个充填序列,分别代表盆地的4个发展阶段。其中,序列I为柳坝塘组及陆良组下段,沉积时限为820~800 Ma,属低密度浊流和深水饥饿沉积,代表裂谷盆地的快速沉降阶段;序列II为澄江组、陆良组上段及牛头山组,沉积时限为800~725 Ma,属扇三角洲-湖泊沉积,代表裂谷盆地的成熟发展阶段;序列III为南沱组,沉积时限可能为725~635 Ma,属大陆冰川沉积,代表裂谷盆地开始向被动大陆边缘盆地转换的阶段;序列IV主要为陡山沱组,沉积时限为635~551 Ma,属潮坪沉积,为裂谷盖地层。进一步研究揭示,滇中新元古代裂谷盆地由幼年期分布局限的小型同向半地堑盆地群演化为成熟期统一的大型半地堑盆地,属上叠滑脱盆地。综合研究证实,滇中新元古代裂谷盆地应为陆内裂谷盆地,是Rodinia超大陆裂解的产物。  相似文献   

19.
Regional-scale geophysical information, which includes aeromagnetic, gravity, seismic refraction, multi-channel seismic reflection and electromagnetic induction data, is used to extend our knowledge of the Canadian Shield beneath the Phanerozoic Williston basin of south-central Canada and the north-central United States. A new tectonic map based on this information shows the Proterozoic Flin Flon-Snow Lake and La Ronge-Lynn Lake volcanic island arcs and their associated fore-arc (Kisseynew belt) and back-arc (Reindeer-South Indian Lakes belt) basins wedged between the Archean Superior craton on the east and the Archean parts of the Churchill and Wyoming cratons on the west. Along the western margin of the Superior craton the Thompson nickel belt, including its extension southwards beneath the Williston basin, is interpreted to have been successively the site of continental rifting and rupturing, an evolving continental margin, a continent-volcanic island arc “suture” zone and eventually a continental-scale strike-slip fault. The North American Central Plains electrical conductivity anomaly and closely related seismic low-velocity zones are explained by the presence in the lower crust of buried slices of hydrated oceanic-type material, situated within the southward extension of the Reindeer-South Indian Lakes remnant back-arc basin and adjoining tectonic units. A new plate tectonic model is proposed for this region that involves the rifting and rupturing of the Archean continents and the opening and closing of one or more oceanic basins. This model is shown to be consistent with most of the geological, geophysical and geochronological data that pertains to the Proterozoic evolution of the exposed Shield and similar geophysical data and subsurface geochronological information from further south.  相似文献   

20.
Three variants of Atlantic-type continental margin border Southern Africa. On the west is a rifted margin with a rift phase no more than 50 m.y. in length (180–130 m.y. ago). Sedimentary basin formation was by upbuilding of a sediment terrace during the rift phase and the 30 m.y. following, with outbuilding of the terrace dominant during the Cainozoic. Little downwarping of the oceanic crust occurred but the continent—ocean transition zone appears to be wide.To the south of South Africa is an extensive sheared margin. Basin formation began here in mid-Triassic times with intermontane deposition. Local increase in lower crustal density appears to have accompanied subsidence. Truncation of the basins occurred 130–2100 m.y. ago and in places detrital influx was trapped behind a marginal fracture ridge. No continental rise sedimentary apron and characteristic deep structure were formed in these places. A ‘welding’ of the continental edge appears to have taken place.East of 30° E a complex continental margin with a protracted rift phase exists. From Triassic to Cretaceous times sedimentary basin formation was controlled by an E-W tensional stress regime resulting in N-S horsts and grabens. This was accompanied by vol-canicity and crustal thinning. Other stress systems may have prevailed during continental break-up in the Cretaceous while today the region is seismically active and the tensional stress assumed to be E-W. Following break-up sedimentary basins in Natal Valley and Mozambique Channel encroached southwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号