首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kyanite Mining Corporation, located in Dillwyn, Virginia has been in operation for over 50 years and their local operation is the largest kyanite mine in the world. As part of the processing at this location, a magnetic separate is generated and a minimum estimation of 3.57 million tons of waste has accumulated. Currently no use for the magnetic separate has been identified. We investigated eight representative samples of the magnetic mine waste which varied in color from a dark tan to black, to determine if the waste could be recycled as an ore or could be used as an environmental media. Mineralogical investigations indicate the composition of the magnetic mine waste is dominated by magnetite, kyanite, lesser amounts of hematite and charcoal. Magnetite occurs as fine grained crystals and as inclusions in kyanite. Hematite occurs largely as botryoidal textures, as discrete grains, and as coatings on kyanite grains. Fe-oxide spheres ranging in diameter from approximately 5–100 μm are common and may compose up to 10% in some samples. Titanium dioxide was rarely observed as coatings on silicate mineral grains. Energy dispersive spectroscopy analysis on magnetite crystals indicates they have end-member compositions. Bulk property investigations indicate that grain size distributions of samples are primarily unimodal with 20–40% of material being between 0.600 and 0.250 mm. Hydraulic conductivity values of samples investigated vary between 0.0036 and 0.0077 cm/s and are broadly consistent with those expected of sands with similar grain size distributions. In addition to the magnetic waste stream a light blue, water soluble, amorphous Cu sulfate occurs as a coating on surfaces of boulders. The coating is composed of rounded interlocking particles 5–60 μm in diameter. This material is of some environmental concern for freshwater invertebrates, but can be managed using sorption media. Hyperspectral data were gathered of the magnetic separate, kyanite ore samples, and the light blue Cu sulfate. The signatures of the kyanite ore, the blue mineral coating, and a mixture of the two provide spectral fingerprints that an imaging spectrometer could exploit for rapid detection and subsequent environmental monitoring.  相似文献   

2.
The Fairpoint Member of the Fox Hills Formation (upper Maastrichtian) in Meade County, South Dakota, USA, contains an osteichthyan assemblage indicative of transitional to marine shoreface deposits. The fauna consists of: Lepisosteus sp., Paralbula casei, Cylindracanthus cf. C. ornatus, Enchodus gladiolus, Hadrodus sp., and indeterminate osteichthyans with probable affinities to the Siluriformes and Beryciformes. The Fairpoint fauna is of limited species diversity and in this character mirrors many other Upper Cretaceous North American osteichthyan assemblages. Comparison to Upper Cretaceous chondrichthyan diversity and consideration of the structure of Cretaceous marine food webs suggest that osteichthyans are strongly under-represented in the Upper Cretaceous of North America. The small size and poor preservation potential of many Upper Cretaceous North American osteichthyans probably account for much of this observed paucity. Fairpoint osteichthyans are members of families that survive the Cretaceous–Paleocene boundary extinction event. Some of these genera and families are still extant and occur in a wide array of modern fresh, brackish, and shallow marine environments.  相似文献   

3.
Selenium (Se) concentrations more than 12 times greater than the provincial freshwater quality guideline (2 µg/L) were detected in the Elk River downstream from the five open-pit coal mines in southeastern British Columbia's Elk River Valley. To identify possible sources of Se to the Elk River, samples from the coal-bearing Mist Mountain Formation were studied using X-ray diffraction, elemental and oxide analyses, sequential extractions and heavy liquid separation. Between 2.5 and 21.3% of the total Se in the five types of materials studied is water-soluble and 1.0 to 10.6% is associated with hydrous ferric and manganese oxides. Se associated with sulphides and organic material varies between 60 and 84% of the total Se and Se in the silicate structure varies from 5.9 to 24.7%. The ratio of sulphides to the total of organic carbon is well-correlated with the amount of Se in materials closely associated with coal seams containing less than 6 mg/kg of Se (r=0.916). This may suggest that the amount of organic matter present during deposition affects the amount of Se incorporated into sulphides.  相似文献   

4.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

5.
A long held geologic paradigm is that mudrocks and shales are basically the product of ‘hemipelagic rain’ of silt- and/or clay-sized, detrital, biogenic and particulate organic particles onto the ocean floor over long intervals of time. However, recently published experimental and field-based studies have revealed a plethora of micro-sedimentary features that indicate these common fine-grained rocks also could have been transported and/or reworked by unidirectional currents. In this paper, we add to this growing body of knowledge by describing such features from the Paleozoic Barnett Shale in the Fort Worth Basin, Texas, U.S.A. which suggests transport and deposition was from hyperpycnal, turbidity, storm and/or contour currents, in addition to hemipelagic rain. On the basis of a variety of sedimentary textures and structures, six main sedimentary facies have been defined from four 0.3 meter intervals in a 68m (223 ft) long Barnett Shale core: massive mudstone, rhythmic mudstone, ripple and low-angle laminated mudstone, graded mudstone, clay-rich facies, and spicule-rich facies. Current-induced features of these facies include mm- to cmscale cross- and parallel-laminations, scour surfaces, clastic/biogenic particle alignment, and normal- and inverse-size grading. A spectrum of vertical facies transitions and bed types indicate deposition from waxing-waning flows rather than from steady ‘rain’ of particles to the sea floor. Detrital sponge spicule-rich facies suggests transport to the marine environment as hypopycnal or hyperpycnal flows and reversal in buoyancy by transformation from concentrated to dilute flows; alternatively the spicules could have originated by submarine slumping in front of contemporaneous shallow marine sponge reefs, and then transported basinward as turbidity current flows. The occurrence of dispersed biogenic/organic remains and inversely size graded mudstones also support a hyperpycnal and/or turbidity flow origin for a significant part of the strata. These processes and facies reported in this paper are probably present in other organic-rich shales.  相似文献   

6.
油页岩是未来重要的补充与替代能源。通过开放体系程序升温热模拟实验,对燕山地区下马岭组海相油页岩进行了研究。结果表明:其热裂解反应主要发生在440~480℃,表观生烃活化能集中分布于170~290 kJ/mol,主峰约为240 kJ/mol,明显高于陆相油页岩(抚顺油页岩和茂名油页岩),而与下古生界海相烃源岩(甘肃平凉奥陶系灰岩及爱沙尼亚奥陶系Kukersite油页岩)活化能分布范围及主峰位置相似。以ICP技术规范为例,在相同热历史条件下,通过数值模拟认识到下马岭组海相油页岩主生烃温度为275~325℃,高于湖相油页岩(265~305℃),而与下古生界海相烃源岩相似,表明其可能具有与古生界海相有机质相似的生烃机理。  相似文献   

7.
 Selenium (Se), an animal toxicant and aquifer contaminant, occurs in coal mine environments of Wyoming. There is a paucity of information on solution-phase Se speciation in mine soils. The objectives of this study were to compare Se extraction efficiencies of various reagents and to characterize SeO2– 3 (selenite), SeO2– 4 (selenate) and organic Se components in these extracts. Forty coal mine soils were extracted using DI (deionized) water, hot water (0.1% CaCl2), AB-DTPA, NaOH, and KH2PO4. Each solution was analyzed for total dissolved Se, and inorganic and organic Se fractions. Both inorganic and organic Se fractions were detected in the soil extracts. The order of Se (total, inorganic, and organic) extraction efficiency for different reagents was DI water < hot water < AB-DTPA < NaOH < KH2PO4. The inorganic–organic Se ratios in DI water, hot water, AB-DTPA, NaOH, and KH2PO4 extracts were 60 : 40, 26 : 74, 61 : 39, 87 : 13, and 52 : 48, respectively, indicating predominance of inorganic Se in all but the hot water extract. Selenite was the dominant inorganic species in AB-DTPA and KH2PO4 extracts, while SeO2– 4 was the major Se species in the DI water, hot water, and NaOH extracts. Significant correlations (P<0.01) were observed among extractable inorganic Se [NaOH and KH2PO4 (r=0.95); hot water and AB-DTPA (r=0.89)], total soluble Se [DI water with hot water (r=0.98) and AB-DTPA (r=0.95)], and Se species [SeO2– 3 in AB-DTPA with SeO2– 4 in NaOH (r=0.94) and SeO2– 3 in KH2PO4 (r=0.88)]. These correlations are indicative of Se extraction efficiency, thermodynamically predicted chemical transformations (such as oxidation of SeO2– 3 to SeO2– 4), and probable interconversions between the organic and inorganic Se fractions (r=0.70 in KH2PO4 extracts); as a whole the correlations can be used as statistical validations of possible geochemical processes. Received: 21 August 1995 · Accepted: 16 October 1995  相似文献   

8.
Irragric anthrosols form as a result of prolonged deposition of fine sediments from irrigation water. Ancient irragric soils centuries to millennia old occur in several world regions, especially in arid environments of Asia and the Americas. This article presents evidence for an ancient irragric anthrosol in the North American Southwest, along the Snaketown Canal System in the Middle Gila River Valley, Arizona. This pedostratigraphic unit was formed as a result of a millennium of irrigation by Hohokam farmers from A.D. 450 to 1450. The irragric soil consists of a mantle of silty‐to‐loamy textures with minimal soil formation overlying a natural argillic horizon on a Pleistocene stream terrace. A soil mapped independently by the United States Department of Agriculture‐Natural Resources Conservation Service with these horizons corresponds closely with the canal system. Soil within the canal system tends to be lower in salt, sodium, and pH compared with external soils. This suggests that the irragric process improved soil for crop production through long‐term leaching and additions of fresh sediments with the irrigation water. This anthropogenic process of canal sedimentation has had a long‐lasting impact on the sedimentary record and soils in this arid environment.  相似文献   

9.
《Applied Geochemistry》2001,16(14):1641-1652
Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0–4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO4 (up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO4 was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO4 may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.  相似文献   

10.
The Bunker Hill Mine in Idaho's Coeur d'Alene mining district produces approximately 10 m3/minute of acid water containing high concentrations of heavy metals. Field and laboratory studies indicate that much of the acid water is produced in a single ore body in the upper part of the mine. The ore of this body contains mainly sphalerite, galena, and pyrite in a siderite-quartz gangue. Ground water recharges this ore body through a near-vertical zone of high permeability, which is the result of mining by the caving technique. Ore samples from the caving area contained oxidized forms of iron and produced acid in a laboratory leaching test. Leaching experiments with several ore samples from the mine also indicated that the ratio of pyrite to calcite in the samples strongly controlled the resultant pH values. Oxidation of pyrite to sulfuric acid and compounds of iron is apparently responsible for the production of acid water in the mine. In contrast, dissolution of calcite in water results in a basic solution, with pH around 8.3, that can neutralize the acid produced by the oxidation process. Methods for prevention of acid mine drainage in this and other similar mines are noted.  相似文献   

11.
A kyanite mine in central Virginia produces a silicate-rich waste stream which accumulates at a rate of 450,000–600,000 tons per year. An estimated 27 million tons of this waste stream has accumulated over the past 60 years. Grain size distribution varies between 1.000 and 0.053 mm, and is commonly bimodal with modes typically being 0.425 and 0.250 mm and uniformity coefficients vary from 2.000 to 2.333. Hydraulic conductivity values vary from 0.017 to 0.047 cm/s. Mineralogy of the waste stream consists of quartz, muscovite, kyanite and hematite. Muscovite grains have distinct chemical compositions with significant Na2O content (1.12–2.66 wt%), TiO2 content (0.63–1.68 wt% TiO2) and Fe content, expressed as Fe2O3 (up to 1.37 wt%). Major element compositions of samples were dominated by SiO2 (87.894–90.997 wt%), Al2O3 (6.759–7.741 wt%), Fe2O3 (1.136–1.283 wt%), and K2O (0.369–0.606 wt%) with other components being <1.000 wt%. Elements of environmental concern (V, Cr, Ni, Cu, Zn, As, Ag, Sn, Sb, Ba, Hg, Tl, and Pb) were detected; however, the concentrations of all elements except Ni were below that of the kyanite quartzites in the region from which the waste is derived. Both major and trace element compositions indicate minimal variation in composition. The waste stream has potential for recycling. Muscovite is suitable for recycling as a paint pigment or other industrial applications. Muscovite and hematite are commonly intergrown and are interpreted to be material where much of the elements of environmental concern are concentrated. Reprocessing of the waste stream to separate muscovite from other components may enable the waste stream to be used as constructed wetland media for Virginia and nearby states. Recycling of this mine waste may have a positive impact on the local economy of Buckingham County and aid in mitigation of wetland loss.  相似文献   

12.
《四川地质学报》2019,(3):407-410
本文通过野外调查、采样、实验测试及搜集大量资料等工作手段,获取关键的地球化学、物性参数等,对川东北达州地区中下侏罗统自流井组大安寨断和东岳庙段页岩气的成藏条件进行了综合分析研究。结果表明,区内页岩气的富集主要受泥页岩的有机碳含量、有机质热成熟度、生烃潜量及地层压力等因素控制,区内该组镜质体反射率Ro平均为1.005%、有机碳含量TOC平均为0.68%、生烃潜量平均为1.80mg/g,整体表现出研究区地化条件一般,但局部地区偏好,具备页岩气形成的有利条件;沉积相控制了页岩的物性特征及矿物组分特征,具备页岩气勘探开发及储层改造的必要条件。  相似文献   

13.
14.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

15.
The accumulation of selenium in evaporation basins (or ponds) in the San Joaquin Valley, California is of a great concern due to its potential hazards to environments. In this study, the accumulation, speciation and concentrations of Se were examined in waters as well as sediments in a system of the evaporation ponds. A significant decrease in the total dissolved Se concentration in Cell 1 in which drainage water with higher Se concentration was pumped from Inlet Channels indicated that the immobilization of Se was active in the Cell 1 and resulted in the higher Se concentration in sediments compared to the terminal cell such as Cell 9. The percentage of reduced Se species such as selenite [Se(IV)] and org-Se of total Se in drainage waters was also found increased in Cell 1 compared to Inlet Channels. The total dissolved Se concentrations in water along flow paths from Cell 1 were relatively constant except for terminal cells such as Cells 9 and 10, which showed higher total dissolved Se concentrations due to evapoconcentration. The percentage of reduced Se forms of total Se was inversely proportional to the percentage of Se(VI) depending on the redox condition of evaporation ponds along the flow paths. Sequential extractions of Se species in sediments indicated that organic associated Se and elemental Se were prevalent forms in sediments in the ponds system. The higher concentrations of elemental Se and organic associated Se in sediments in Cell 1 indicated that the immobilization of Se was active in the sediments compared to Cell 9, while the percentage of both fractions of total Se in sediments in Cells 1 and 9 was relatively constant. The organic materials from algae might provide carbon sources for Se reduction and Se sink in sediments in its elemental and organic associated forms.  相似文献   

16.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

17.
Sequence stratigraphic analysis of four widely spaced outcrops of middle Cenomanian to middle Turonian strata deposited in the Western Interior foreland basin in southern New Mexico, USA, defines ten sequence boundaries in a marine shale‐rich interval ca 200 m thick. The majority of sequence boundaries are based on basinward shifts in lithofacies characterized by either a non‐Waltherian contact between distal‐bar or lower shoreface sandstone and underlying lower offshore shale, or an erosional contact between distal‐bar or lower shoreface sandstone and underlying upper offshore shale. The sequence boundaries commonly correlate basinward to packages of storm‐deposited sandstone and to beds of sandy grainstone composed of winnowed inoceramid shell fragments. In several cases, however, the sequence boundaries pass basinward into presumably conformable successions of lower offshore shale. Maximum flooding surfaces within the sequences are represented by one or more beds of locally phosphatized globiginerid wackestone and packstone or exist within a conformable succession of lower offshore shale. Following initial south/south‐westward transgression into the study area, the regional trend of palaeoeshorelines was north‐west to south‐east, although isopach data indicate that lobes of sandstone periodically spread south‐eastward across the study area. The ten sequences in the study area are arranged into a third‐order composite megasequence that is characterized by overall upward‐deepening followed by upward‐shallowing of sequences. The composite megasequence is similar but not identical to the previously established T‐1 transgression and R‐1 regression in New Mexico. Based on radioisotopic dates of bentonites, the average frequency of the sequences within the study area was ca 327 kyr, which is consistent with fourth‐order cycles of ca 400 kyr interpreted in coeval marine strata elsewhere in the world.  相似文献   

18.
对湖北秭归县五龙剖面五峰组—龙马溪组下段黑色岩系的微量元素和有机碳含量进行了系统采样分析,结果表明,U/Th、Ni/Co、V/Cr和WSc比值等判别指标能够很好的响应各时期氧化还原条件和海平面的变化,对奥陶系—志留系界线附近的地层缺失也有明显的指示作用.另外,U/Th、Ni/Co、V/Cr和V/Sc比值与TOC值之间表现出良好的正相关关系,表明这些古环境判别指标在一定程度上可用来指示五峰组和龙马溪组的有机碳含量变化.通过对五龙剖面及周边地区富有机质页岩厚度、TOC值和含气性的对比分析,推断五龙地区和西侧的鼓锣坪地区、东侧的九畹溪地区构成隆凹相间的格局,这一认识对区域内的页岩气有利目标区预测具有一定的指导意义.  相似文献   

19.
《四川地质学报》2022,(4):639-642
四川黑水卡龙沟的地貌是典型的高寒岩溶作用下形成的钙华堆积地貌,其钙华堆积量巨大且钙华景观类型丰富,享有"中国苔藓泉华世界"之美誉。与黄龙的钙华景观相比,卡龙沟的钙华景观表面多覆盖有大量的藻类、苔藓等植物,形成了丰富的生物钙华景观。钙华的形成通常是岩石、水、大气、生物等多方面相互作用的结果。通过对卡龙沟钙华体形成造成影响的因素进行列举并适度分析,望有关认识能对今后卡龙沟钙华的进一步研究提供依据。  相似文献   

20.
通过加水的高温高压热模拟实验对鄂尔多斯盆地延长组长7段陆相低熟油页岩进行地质条件约束下的模拟,获得不同热演化程度的页岩样品,并对其孔隙特征及纳米级孔隙的分布进行研究。结果表明,原始样品微孔隙类型主要有原生残留孔隙、次生溶蚀孔隙、黏土矿物粒间孔和黄铁矿晶间孔,及一些表生作用形成的收缩孔,其中一些孔隙被残留烃所充填。随着温、压的升高,有机质孔开始发育,样品孔隙度呈现出先增加后减小的演化规律,从原始样品的3.8%升高至350℃、32.5 MPa的17.53%后又逐渐降低,370℃、42.9 MPa时为8.15%,孔径峰值从20~100nm变为2~10nm,尔后又升至20~200nm,页岩孔隙度的增加主要是有机孔的贡献。低熟阶段样品中有机质纳米级孔隙发育有限,而是多在有机质与骨架颗粒接触边缘发育长条形、狭缝状的孔隙。随着成熟度的升高,在有机质内部开始出现孔隙,黏土颗粒间的有机质也开始分解,出现纳米级层间孔。随温度、压力的继续增大,压实作用、矿物相变及有机孔形成速度减缓的共同作用而减孔显著,岩样孔隙度减小幅度达5.68%,因此对于富有机质页岩来说,深埋阶段压实作用不容小视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号