首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical data from back-arc volcanic zones in the Manus Basinare used to define five magma types. Closest to the New Britainarc are medium-K lavas of the island arc association and back-arcbasin basalts (BABB). Mid-ocean ridge basalts (MORB), BABB andmildly enriched T-MORB (transitional MORB) occur along the ManusSpreading Center (MSC) and Extensional Transform Zone (ETZ).The MSC also erupted extreme back-arc basin basalts (XBABB),enriched in light rare earth elements, P, and Zr. Compared withnormal MORB, Manus MORB are even more depleted in high fieldstrength elements and slightly enriched in fluid-mobile elements,indicating slight, prior enrichment of their source with subduction-relatedcomponents. Chemical variations and modeling suggest systematic,coupled relationships between extent of mantle melting, priordepletion of the mantle source, and enrichment in subduction-relatedcomponents. Closest to the arc, the greatest addition of subduction-relatedcomponents has occurred in the mantle with the greatest amountof prior depletion, which has melted the most. Variations inK2O/H2O indicate that the subduction-related component is bestdescribed as a phlogopite and/or K-amphibole-bearing hybridizedperidotite. Magmas from the East Manus Rifts are enriched inNa and Zr with radiogenic 87Sr/86Sr, possibly indicating crustalinteraction in a zone of incipient rifting. The source for XBABBand lavas from the Witu Islands requires a mantle componentsimilar to carbonatite melt. KEY WORDS: Manus back-arc basin, mantle metasomatism, magma generation  相似文献   

2.
Abstract: The Onsen acid‐sulphate type of mineralization is located in the Desmos caldera, Manus back‐arc basin. Hydrothermal precipitates, fresh and altered basaltic andesite collected from the Desmos caldera were studied to determine mineralization and mobility of elements under seawater dominated condition of hydrothermal alteration. The mineralization is characterized by three stages of advanced argillic alteration. Alteration stage I is characterized by coarse subhedral pyrophyllite with disseminated anhedral pyrite and enargite which were formed in the temperature range of 260–340°C. Alteration stage II which overprinted alteration stage I was formed in the temperature range of 270–310°C and is characterized by euhedral pyrite, quartz, natroalunite, cristobalite and mixed layer minerals of smectite and mica with 14–15 Å XRD peak. Alteration stage III is characterized by amorphous silica, native sulphur, covellite, marcasite and euhedral pyrite, which has overprinted alteration stages I and II. Relative to the fresh basaltic andesite samples, the rims and cores of the partly altered basaltic andesite samples have very low major, minor and rare earth elements content except for SiO2 which is much higher (58–78 wt%) than SiO2 content of the fresh basaltic andesite (55 wt%). REE patterns of the partly altered basaltic andesite specimens are variably depleted in LREE and have pronounced negative Eu anomalies. Normalization of major, minor and REE content of the partly altered basaltic andesites to the fresh basaltic andesite indicates that all the elements except for SiO2 in the partly altered basaltic andesite are strongly lost (e.g. Al2O3 = ‐8.3 to ‐10.9 g/100cm3, Ba = ‐2.2 to ‐5.6 mg/100cm3, La = ‐130 to ‐200 μg/100cm3) during the alteration process. Abnormal depletion of MgO, total Fe as Fe2O3, LREE especially Eu and enrichment of SiO2 in the altered basaltic andesites from the Desmos caldera seafloor is caused by interaction of hot acidic hydrothermal fluid, which originates from a mixing of magmatic fluid and seawater.  相似文献   

3.
Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 °C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 °C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 °C) fluid. All PACMANUS fluids are characterized by negative δDH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 °C) values (∼2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative δ34SH2S values (down to −2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (−4.1‰ to −2.3‰) than Vienna Woods (−5.2‰ to −5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (?80 °C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.  相似文献   

4.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

5.
The geochemical characteristics of 16 oils/condensates/seep oil/oil shows (collectively called oils) from the Eastern Papuan Basin (EPB) and one seep oil from the Western Papuan Basin (WPB) are integrated with data from previous studies of oils, fluid inclusion oils and solid bitumens from the EPB and WPB, Papua New Guinea. The combined set of samples can be divided in two major families of hydrocarbons. The Family A oils, mostly occurring in the WPB region, were generated from clay rich marine source rocks, containing predominantly terrigenous higher plant derived organic matter (OM) deposited in a sub-oxic to oxic environment. Source rock(s) for Family A oils are likely to be of Middle to Upper Jurassic, e.g., the Upper Jurassic Imburu Formation. The Family B oils, distributed mainly in the EPB region, were generated from Cretaceous or younger marine carbonate source rock(s) deposited under anoxic to sub-oxic conditions, and containing predominantly prokaryotic OM with some terrigenous higher plant inputs. The EPB natural gases analyzed in this study may be co-genetic to the co-occurring Family B oils in the EPB. Both Family A and B oils were generated at similar thermal maturities of 1.0–1.3% vitrinite reflectance equivalent. Although no source interval to date has been firmly identified in the EPB, post-Jurassic strata are a viable option, because (1) Late Cretaceous and Paleogene carbonate and clastic marine sediments including possible source lithologies are present, and (2) this section of the Papuan Basin sustained rapid sedimentation and tectonic loading, particularly in the Cenozoic.  相似文献   

6.
Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back-arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite-normalized (REEN) distribution patterns (LaN/SmN ∼ 0.6-11; LaN/YbN ∼ 0.6 - 71; ). REEN distribution patterns in different vent fluids range from light-REE enriched, to mid- and heavy-REE enriched, to flat, and have a range of positive Eu-anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid-ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near-seafloor mixing between high-temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.  相似文献   

7.
Ocean Drilling Program (ODP) leg 193 successfully drilled four deep holes (126 to 386 m) into basement underlying the active dacite-hosted Pacmanus hydrothermal field in the eastern Manus Basin. Anhydrite is abundant in the drill core material, filling veins and vesicles, cementing breccias, and occasionally replacing igneous material. We report rare-earth element (REE) contents of anhydrite from a site of diffuse venting (Site 1188) which show extreme variability, in terms of both absolute concentrations (e.g., 0.08–28.3 ppm Nd) and pattern shape (LaN/SmN=0.08–3.78, SmN/YbN=0.48–23.1, Eu/Eu*=0.59–6.1). The range of REE patterns in anhydrite includes enrichments in the middle and heavy REEs and variable Eu anomalies. The patterns differ markedly from those of anhydrite recovered during ODP Leg 158 from the TAG hydrothermal system at the Mid-Atlantic Ridge which display uniform LREE-enriched patterns with positive Eu anomalies, very similar to TAG vent fluid patterns. As the system is active, the host-rock composition is uniform, and the anhydrite veins appear to relate to the same hydrothermal stage, we can rule out predominant host-rock and transport control. Instead, we propose that the variation in REE content reflects waxing and waning input of magmatic volatiles (HF, SO2) and variable complexation of REEs in the fluids. REE speciation calculations suggest that increased fluoride and possibly sulfate concentrations at Pacmanus may affect REE complexation in fluids, whereas at TAG only chloride and hydroxide complexes play a significant role. The majority of the anhydrites do not show positive Eu anomalies, suggesting that the fluids were more oxidizing than in typical mid-ocean ridge hydrothermal systems. We use other hydrothermal fluids from the Manus Basin (Vienna Woods and Desmos), which bracket the Pacmanus fluids in terms of acidity and ligand concentrations, to examine the dependence of REE complexation on fluid composition. Geochemical modeling reveals that under the prevailing conditions at Pacmanus (pH~3.5, T=250–300 °C), Eu oxidation state and the relative importance of fluoride versus chloride complexing are very sensitive to small variations in oxygen fugacity, temperature, and pH. Patterns with extreme mid-REE enrichment may reflect speciation effects (free-ion abundance) coupled with crystal chemical control. We conclude that the great variability in REE concentrations and pattern shape is likely due to variable fluid composition and REE complexation in the fluids. Editorial handling: L. Meinert  相似文献   

8.
The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes.Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350 °C) silica-rich “bleaching” alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material.Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250 °C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.  相似文献   

9.
Geochemical, isotopic, and geochronologic data for exhumed rocks in the Woodlark Rift of Papua New Guinea (PNG) allow a tectonic link to be established with the Late Cretaceous Whitsunday Volcanic Province (WVP) of northeastern Australia. Most of the metamorphic rocks in the Woodlark Rift have Nd isotopic compositions (εNd = + 1.7 to + 6.2) similar to the Nd isotopic compositions of rocks in the WVP (εNd = + 1.3 to + 6.6; Ewart et al., 1992), and contain inherited zircons with 90 to 100 Ma U–Pb ages that overlap the timing of magmatism in the WVP. None of the metamorphic rocks in the Woodlark Rift have the highly evolved Hf and Nd isotopic compositions expected of ancient continental crust. Magmas were erupted in the WVP during the middle Cretaceous as eastern Gondwana was rifted apart. The protoliths of felsic and intermediate metamorphic rocks in the Woodlark Rift are interpreted to be related to the magmatic products produced during this Cretaceous rifting event. Some mafic metamorphic rocks exposed in the western Woodlark Rift (eclogites and amphibolites) are not related to the WVP and instead could have originated as basaltic lavas crystallized from mantle melts at (U)HP depths in the Late Cenozoic, or as fragments of Mesozoic aged oceanic lithosphere.Isotopic and elemental comparisons between basement gneisses and Quaternary felsic volcanic rocks demonstrate that felsic lavas in the D'Entrecasteaux Islands did not form solely from partial melting of metamorphic rocks during exhumation. Instead, the isotopic compositions and geochemistry of Quaternary felsic volcanic rocks indicate a significant contribution from the partial melting of the mantle in this region. When combined with geophysical data for the western Woodlark Rift, this suggests that future seafloor spreading will commence south of Fergusson Island, and west of the present-day active seafloor spreading rift tip.  相似文献   

10.
Abstract. The Onsen site is an active submarine hydrothermal system hosted by the Desmos caldera in the Eastern Manus Basin, Papua New Guinea. The hydrothermal fluid is very acidic (pH=1.5) and abundant native sulfur is deposited around the vent. The δ34S values of native sulfur range from -6.5 to -9.3 %o. δ34S values of H2S and SO4 in the hydrothermal fluid are -4.3 to -9.9 %o and +18.6 to +20.0 %o, respectively. These δ34S values are significantly lower than those of the other hydrothermal systems so far reported. These low δ34S values and the acidic nature of the vent fluids suggest that volcanic SO2 gas plays an important role on the sulfur isotope systematic of the Onsen hydrothermal system. Relationship among the δ34S values of S-bearing species can be successively explained by the model based on the disproportionation reaction starting from the volcanic SO2 gas. The predicted δ34S values of SO2 agree with the measured whole rock δ34S values. δD and δ18O values of clay minerals separated from the altered rock samples also suggest the contribution of the magmatic fluid to the hydrothermal system. Present stable isotopic study strongly suggests that the Onsen hydrothermal site in the Desmos caldera is a magmatic submarine hydrothermal system.  相似文献   

11.
J.D. Fairhead 《Tectonophysics》1976,30(3-4):269-298
A compilation of all published and unpublished gravity data for the Eastern rift between latitudes 1°N and 5°S is presented. The Bouguer anomaly map reveals that the shape of the negative regional anomaly associated with the rift is approximately two-dimensional, striking east of north, of width 350 ± 50 km and amplitude500 ± 100 g.u. relative to the background value of−1300 ± 100 g.u. to the west. The regional anomaly is interpreted in terms of an upward thinning of the lithosphere and replacement by low-density asthenosphere. This model is different from previous interpretations in that major lithospheric thinning is restricted to the region of the Eastern rift affected by the domal uplift and does not extend beneath the Lake Victoria region to the west. The gravity and seismic models are compatible if the anomalous upper mantle (asthenospheric part), beneath the rift, is in a state of partial melt. A consequence of the revised regional anomaly is that it reduces previous amplitude estimates of the axial positive residual anomaly within the rift by at least 50% and generates negative anomalies over the rift shoulders in areas covered by Cenozoic volcanics. These negative anomalies are considered to be caused by the low density of the surface volcanics. Within the rift, elongated negative anomalies of amplitude 100–350 g.u. are associated with sedimentary basins and are attributed to low-density sediments up to 3 km thick. The positive residual anomaly along the axis of the rift can be interpreted in terms of either a dyke injection zone less than 15 km wide or by a dense infill body about 2.5 km thick. The positive anomaly is shown to be confined to the volcanic province of the Eastern rift and has its southern termination in the Magadi—Natron area, just north of where the Kenya rift valley changes to block faulting in N. Tanzania. This termination coincides with a change in the spatial distribution of the seismic and geothermal activity.  相似文献   

12.
The Rabaul caldera is at the northeastern tip of the island of New Britain, Papua New Guinea. Unwelded pumice flows and air fall pumice of andesite, dacite and rhyolite drape the caldera. They contain sparse phenocrysts of plagioclase, pyroxene and rarely amphibole, together with microphenocrysts of titanomagnetite and ilmenite; apatite and pyrrhotite are also present. The equilibration temperature of the iron-titanium oxides range from 1035° to 835° C. Estimates of sulphur fugacity are obtained from the composition of the pyrrhotites which contain about 1% Cu and 0.3% Mn. Calculations show that the fugacity of SO2 may be several tens of bars at 1000° C. An estimate of the activity coefficient of Fe3O4 in titanomagnetite was obtained, and within the limits of error, can be taken as unity in the temperature range 835–1035° C and the composition range 22. 6–42.5% ulvospinel. Calculations suggest that the phenocrysts of orthopyroxene and titanomagnetite in the rhyolitic pumice equilibrated at pressures (P total) of between 2.2 and 2.6 kilobars. Estimates of pH2o are unreliable because of the presumed later hydration of the pumice.  相似文献   

13.
The Mt Giluwe shield volcano was the largest area glaciated in Papua New Guinea during the Pleistocene. Despite minimal cooling of the sea surface during the last glacial maximum, glaciers reached elevations as low as 3200 m. To investigate changes in the extent of ice through time we have re-mapped evidence for glaciation on the southwest flank of Mt Giluwe. We find that an ice cap has formed on the flanks of the mountain on at least three, and probably four, separate occasions. To constrain the ages of these glaciations we present 39 new cosmogenic 36Cl exposure ages complemented by new radiocarbon dates. Direct dating of the moraines identifies that the maximum extent of glaciation on the mountain was not during the last glacial maximum as previously thought. In conjunction with existing potassium/argon and radiocarbon dating, we recognise four distinct glacial periods between 293–306 ka (Gogon Glaciation), 136–158 ka (Mengane Glaciation), centred at 62 ka (Komia Glaciation) and from >20.3–11.5 ka (Tongo Glaciation). The temperature difference relative to the present during the Tongo Glaciation is likely to be of the order of at least 5 °C which is a minimum difference for the previous glaciations. During the Tongo Glaciation, ice was briefly at its maximum for less than 1000 years, but stayed near maximum levels for nearly 4000 years, until about 15.4 ka. Over the next 4000 years there was more rapid retreat with ice free conditions by the early Holocene.  相似文献   

14.
15.
The interaction of the Australian, South Bismarck and Solomon Sea Plates in Papua New Guinea is the source of frequent earthquakes that occur as a result of subduction and arc continent collision. Previous investigators have drawn attention to a discontinuity in the horizontal azimuth of slip vectors along the southern boundary of the South Bismarck Plate, with those to the west of 148°E being systematically rotated 20ndash;30° clockwise compared to those located east of 148°E. This has led to the suggestion that relative motion may be occurring between the Huon Peninsula and New Britain or that more than two plates are acting south of the South Bismarck Plate. Global positioning system (GPS) measurements since 1991 indicate that there is no internal deformation occurring within the South Bismark Plate and that at least two distinct plates are in contact with the southern edge of the South Bismarck Plate. We show from a study of a recent earthquake dataset that the change in slip vector azimuth can be modelled by the interaction of the overriding South Bismarck Plate with the underthrusting Australian and Solomon Sea Plates, consistent with the GPS observations, while maintaining the South Bismarck Plate as a rigid entity. We found that a transition zone exists between 147°E and 148°E where the underlying plate changes from the Australian Plate to the Solomon Sea Plate. There are insufficient data at present to indicate whether or not a third plate, the Woodlark Plate, is also interacting directly with the South Bismarck Plate in this transition zone. Slip vector azimuths were used to estimate an Euler pole (6.74°S, 144.64°E), which describes the relative motion of the South Bismarck and Solomon Sea Plates along the New Britain Trench.  相似文献   

16.
Kosipe, an upland valley at 2000 m altitude in the Owen Stanley Ranges of southeastern New Guinea, is known for the discovery of large stone waisted blades dated to 31 400 cal a BP. The purpose of these tools and the nature of occupation are unknown. The altitude is too high for most food crops today and may have stood close to the treeline during the last glaciation. Three pollen and charcoal diagrams from a large swamp in the Kosipe Valley provide a record of swamp and dryland changes for more than 50 000 years. There have been considerable fluctuations in vegetation on the slopes and on the swamp which reflect both environmental change and anthropogenic influences. A gymnosperm-rich forest at the base is replaced by mountain forest dominated by Nothofagus about 42 000 years ago. Fire first becomes apparent across the swamp around 40 000 years ago but is not common during the time when subalpine herbs reach their best representation. Tree fern-rich grasslands form a mosaic with montane forest in a near-treeline environment. The Pleistocene–Holocene boundary is marked by a decline in Nothofagus and increase in lower montane mixed forest taxa. Charcoal increases before this time and the swamp vegetation becomes more grass-rich. Charcoal is at its maximum through the last 3000 years possibly reflecting climate variability as well as sedentary occupation and agriculture on the swamp margin. Supplementary pollen diagrams from two higher altitude sites support the evidence from the Kosipe Swamp cores. Charcoal, local catchment erosion and increases in disturbance taxa become more widespread in the last 5000 years at these sites, suggesting that local settlement at Kosipe may have lagged behind general landscape use by populations from lower altitudes.  相似文献   

17.
When Tuluman volcano, in St Andrew Strait, northern Bismarck Sea, erupted between 1953 and 1957, it produced acid rocks similar in major element chemistry to those of three other islands in the Strait — Lou, Pam Lin, and Pam Mandian. These acid rocks — termed the TLP’ series — are thought to represent magmas, or to be derivatives of a parental magma, produced by melting of crust (about 25 km thick beneath St Andrew Strait). TLP rocks have agpaitic indices ranging between 0.86 and 0.96. Acid lava also makes up 3 of the 4 Fedarb Islands at the northern end of St Andrew Strait, but its composition appears to be unrelated to that of the TLP series, and its origin is uncertain.

Q‐normative basalts (quartz tholeiites) make up the fourth island of the Fedarb group, and ol‐ and hy‐normative basalts crop out on Baluan Island at the southern end of the Strait. These basalt types do not appear to be directly related to one another, although both may have been derived from parents that originated in the upper mantle. Andesitic rocks have not been found on any of the islands in St Andrew Strait.

Tuluman and the volcanoes of Lou Island form an arc which may be part of a developing (or completed) ring fracture whose centre coincides with the line between Baluan Island, the Pam Islands, and the Fedarb Islands. The ring fracture may be the result of sagging of crust above a zone of crustal melting that produced the TLP magmas. It is possible that collapse could take place along this ring fracture, producing a caldera.  相似文献   

18.
New Pb-, Sr-, and Nd-isotopic data have been obtained for the rocks of volcanoes overlying a wide range of depths (100–580 km) to the Wadati-Benioff Zone (WBZ) in the New Britain island arc, Papua New Guinea. Well-defined trends consistent with two-component mixing are observed in combined Pb-isotope/trace-element plots. One of the components is believed to represent a slab contribution whose isotopic signature, unlike those noted for several other arcs, appears to be dominated by subducted, altered, oceanic crust rather than by sediment. This conclusion is consistent with the results of a recent Be–B study of New Britain rocks. The influence of the slab component is considered to decrease as depth to the WBZ increases. Higher abundances of high-field-strength elements correlate with increasing depths to the WBZ, and may be indicative of smaller degrees of partial melting of the mantle wedge as WBZ depths increase. Abundances of other incompatible elements appear to reflect a complex interplay between the slab-derived flux and melting process.  相似文献   

19.
The ~750 km2 Dayman dome of the Late Cretaceous Suckling‐Dayman massif, eastern Papua New Guinea, is a domed landform that rises to an elevation of 2850 m. The northern edge of the dome is a fault scarp >1000 m high that is now part of an active microplate boundary separating continental crust of the New Guinea highlands from continental and oceanic crust of the Woodlark microplate. Previous work has shown that a parallel belt of eclogite‐bearing core complexes north‐east of the Dayman dome were exhumed from up to 24–28 kbar in the last few millions of years. The remarkably fresh and lightly eroded scarp of the Dayman dome exposes shallowly‐dipping mylonitic (S1) metabasite rocks (500 m thick) on the northern flank of Mount Dayman. Field relationships near the base of this scarp show a cross cutting suite of ductile and brittle meso‐structures that includes: (i) rare ductile S2 folia with a shallowly ESE‐plunging mineral elongation lineation defined by sodic‐calcic blue amphibole; (ii) narrow steeply‐dipping ductile D2 shear zones; and (iii) semi‐brittle to brittle fault zones. Pumpellyite‐actinolite facies assemblages reported by previous workers to contain local aragonite, lawsonite and/or glaucophane are found in the core of the complex at elevations greater than 2000 m. These assemblages indicate peak metamorphic pressures of 6–9.5 kbar, demonstrating exhumation of the core of the Dayman dome from depths of 20–30 km. The S1 metamorphic mineral assemblage in metabasite includes actinolite‐chlorite‐epidote‐albite‐quartz‐calcite‐titanite, indicative of greenschist facies conditions for the main deformation. New mineral equilibria modelling suggests that this S1 assemblage evolved at 5.9–7.2 kbar at ~425 °C. Modelling variable Fe3+ indicates that the sodic‐calcic blue amphibole (D2) formed under a higher oxidation state compared with the S1 assemblage, probably at <4.5 kbar. A SE‐dipping, Mio‐Pliocene sedimentary sequence (Gwoira Conglomerate) forms a hangingwall block juxtaposed by low‐angle fault contact with the metabasite footwall. Prehnite‐bearing D3 brittle fault zones separate the two blocks and likely accommodated the final exhumation of the S1 greenschist facies assemblage in the footwall. These results indicate that the extensive Mt Dayman fault surface coincides with a domed S1 greenschist facies foliation that was last active at >20 km depth. Exhumation of this foliation must therefore be controlled by brittle faults of the active microplate boundary that are largely not observed in the study area. The structural record of the final exhumation of the Dayman dome to the surface was likely lost as a result of erosion, poor exposure or wide spacing of semi‐brittle to brittle fault zones.  相似文献   

20.
Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea   总被引:4,自引:0,他引:4  
The Porgera gold deposit in Papua New Guinea is a world-class example of an alkalic-type epithermal gold system (stage II), which overprints a precursor stage of magmatic-hydrothermal gold mineralization (stage I). Gas and ion chromatographic analyses of fluid inclusions contained in vein minerals from both mineralization stages have been carried out in order to constrain the compositions of the fluids involved in, and the processes attending, ore deposition. These data indicate the presence of three end-member liquids, the most dilute of which was present throughout the mineralization history and is interpreted to represent evolved groundwater of meteoric origin. Its composition is estimated to have been approximately 500 mM Na+, 10 mM K+, 5 mM Li+, 250 mM Cl, 0.15 mM Br, and 0.01 mM I, plus significant concentrations of dissolved gases. More saline liquids were also present during the two main stages of ore formation, and although their compositions differ, both are interpreted to have been derived at least in part from magmatic fluids, and to have been the media by which gold was introduced into the system. Stage I minerals contain fluid inclusions which decrease in salinity towards this dilute end-member composition through the vein paragenesis, reflecting progressive dilution at depth of the magmatic fluid source by groundwaters. Ore deposition is thought to have been caused largely by simple cooling and/or wallrock reactions, although limited in situ fluid mixing may also have occurred. The most saline fluids, present in early quartz and pyrite, contain at least 810 mM Na+, 530 mM Ca2+, 130 mM K+, 12 mM Li+, 87 mM SO4 2−, 960 mM Cl, 1.1 mM Br, and 0.05 mM I, plus significant but variable concentrations of dissolved gases. Fluid inclusions from stage II hydraulic breccia veins reveal the presence of two distinct liquids with contrasting salinities, which were present at different times during vein formation. A higher salinity liquid appears to have predominated during mineralization, whereas lower salinity groundwaters filled the structures during intervening periods. The ore-forming fluid may have been forcibly injected into the veins from depth during fracturing and depressurization events, displacing the resident groundwaters in the process. The original composition of this fluid is estimated to have been at least 1770 mM Na+, 59 mM K+, 180 mM Li+, 210 mM SO4 2−, 680 mM Cl, 1.4 mM Br, and 0.09 mM I, plus 1.5 mol% CO2, 0.19 mol% CH4, and 0.04 mol% N2. Gas chromatographic analyses of fluid inclusions from stage II samples show a decrease in total gas content between early unmineralized veins and post-mineralization vuggy quartz (suitable samples could not be obtained from the ore stage itself). Post-mineralization samples plot along an experimental gas-saturation curve in the CO2-CH4-H2O-NaCl system, obtained at conditions similar to those attending stage II ore deposition at Porgera (200–300 bar, ˜165 °C). These results are interpreted to indicate a period of depressurization-induced phase separation during hydraulic fracturing, which resulted in rich ore deposition. Volatile gases such as CH4 and N2, in addition to CO2 in solution, are shown to have a significant negative effect on total gas solubility. This effect may be of critical importance in lowering the temperature and increasing the depth (pressure) at which phase separation can occur in epithermal systems. Received: 28 November 1995 / Accepted: 17 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号