首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apatite fission-track analyses indicate that the Kazda? Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17–14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two-stage structural evolution of the massif. The first stage -encompassing much of the rapid thermal evolution of the massif- comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Küçükkuyu Fm.). The second stage (Plio-Quaternary) has been dominated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary.  相似文献   

2.
要通过在TM遥感图像解译和野外观测的基础上,描述了东昆仑断裂带东段活动形迹的组成和活动断层地貌特征,阐述了甘南高原西秦岭地区新近纪拉分盆地的沉积-构造特征,提出了该区东昆仑-秦岭断裂系晚新生代左旋走滑伸展-走滑挤压-走滑伸展的3个阶段的构造变形模式。指出,中新世晚期至上新世早期,东昆仑-秦岭断裂系以左旋走滑伸展活动为主,伴随着西秦岭地区拉分盆地的形成和超基性火山岩群的发育。这期左旋走滑伸展活动向东扩展导致了渭河盆地新近纪引张应力方向由早期的NE-SW向转变为晚期的NW—SE向。上新世晚期以来(约3.4Ma以前),东昆仑-秦岭断裂系以左旋走滑挤压活动为主,导致早期拉分盆地的轻微褶皱变形,走滑挤压活动主要集中在东昆仑东段玛沁-玛曲主断裂带上。该期构造变动持续到早更新世,它的向东扩展产生了广泛的地壳形变效应,包括青藏东缘岷山隆起带的快速崛起、华北地区汾-渭地堑系的形成和发展以及郯庐断裂带右旋走滑活动等。中、晚更新世时期,断裂系以走滑伸展变形为主,主要集中在东昆仑断裂带东段3个分支上,地块向东挤出伴随着顺时针旋转。  相似文献   

3.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

4.
《Geodinamica Acta》2002,15(5-6):277-288
A close relationship between formation of approximately upright folds with axes normal to the extension direction and ramp/flat extensional geometries is established for well exposed Neogene syn-extensional rocks on the presently low-angle Gediz detachment fault, along the southern margin of the Gediz Graben region of western Anatolia, Turkey. Three unconformity-bounded sedimentary sequences and several metamorphic extensional allochthons were mapped in the upper-plate of the Gediz detachment. The oldest sedimentary sequence consists of deformed and folded strata of sandstones and conglomerates that are regarded as being deposited in a supra-detachment basin during the Miocene–Early Pliocene. This unit rests unconformably on the extensional allochthonous, but directly in fault contact with the lower-plate mylonitic rocks. The younger slightly tilted Late Pliocene–Pleistocene sedimentary sequences are post-detachment units that are controlled by EW-trending high-angle normal faults. The youngest alluvium comprises the undeformed present-day basin fill of the Gediz Graben. The supra-detachment sedimentary rocks contain a number of kilometric-scale longitudinal folds that are nearly parallel to the east-west-trending fault system of the Gediz Graben. The folds have a steeply inclined bisecting surface, an interlimb angle of 130–150°, and a plunge of <10°. These folds may be interpreted to form as a result of bending in the underlying Gediz detachment fault. The bending may have an alternation of ramp and flat geometries on which a hanging-wall syncline and rollover anticline formed, respectively. This study again shows the importance of local geology in understanding of some spectacular structures of the extensional basins.  相似文献   

5.
《Geodinamica Acta》2013,26(5):327-351
A geological study carried out in the southern part of the Larderello geothermal area (Northern Apennines) provides new information on the development mechanism and timing of the earlier extensional structures that formed during the Miocene post-collisional tectonics which affected the orogen. Staircase low-angle normal faults (LANFs) affected a multilayered thickened upper crust after the collisional stage, producing the lateral segmentation of the Tuscan Nappe, the deeper non-metamorphic tectonic unit of the Northern Apennines in the Tuscan area. The tectonic history recorded in two Tuscan Nappe discontinuous bodies revealed that the LANFs took place during the Middle–Late Miocene, displacing collisional structures developed from the Late Oligocene. These Tuscan Nappe bodies are delimited by detachment faults located at the base, within the Tuscan evaporites, and at the top within the Ligurian Units. Their western and eastern margins coincide with east-dipping ramps. These structures and the Tuscan Nappe bodies were later dissected by Pliocene–Quaternary high-angle normal faults. The reconstructed deformation history implies that the Tuscan Nappe bodies are extensional horses developed through an earlier asymmetrical east-dipping extensional duplex system, involved in block faulting during the later, Pliocene-Quaternary, stage of extension.  相似文献   

6.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

7.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

8.
Crustal extension in the overriding plate at the Aegean subduction zone, related to the rollback of the subducting African slab in the Miocene, resulted in a detachment fault separating high‐pressure/low‐temperature (HP‐LT) metamorphic lower from non‐metamorphic upper tectonic units on Crete. In western Crete, detachment faulting at deeper crustal levels was accompanied by structural disintegration of the hangingwall leading to the formation of half‐graben‐type sedimentary basins filled by alluvial fan and fan‐delta deposits. The coarse‐grained clastic sediments in these half‐grabens are exclusively derived from the non‐metamorphic units atop the detachment fault. Being in direct tectonic contact with HP‐LT metamorphic rocks of the lower tectonic units today, the basins must have formed in the period between c. 20 and 15 Ma, prior to the exposure of the HP‐LT metamorphic rocks at the surface, and juxtaposed with the latter during ongoing deformation.  相似文献   

9.
西沙海域夹持于南海西北次海盆和西南次海盆之间,构造演化过程与南海的扩张和南海西部的走滑作用关系密切.基于覆盖西沙海域的区域地震资料开展了构造—地层解释、盆地结构特征分析和区域构造演化制图,整体上将西沙海域划分出3种类型盆地,即高角度断层控制的盆地、低角度拆离断层控制的盆地和走滑盆地.结合地壳厚度变化和伸展薄化程度,突出断层的构造样式,将西沙海域划分为北部拆离断层构造发育区、东南部拆离断层构造发育区、西部走滑断层发育区和中部高角度断层发育区,进而明确了西沙海域盆地的基本构造格局.同时,以关键构造界面为主线,强调了不同类型断层在岩石圈地壳减薄过程中的作用,阐明了西沙海域盆地的差异构造演化过程.   相似文献   

10.
The sedimentary basins that dominate the north-eastern Mediterranean (Adana-Cilicia basins in the west and Iskenderun basin in the east) are located on the flanks of a partly submerged positive structure (a part of the Africa-Eurasia convergence zone) along which strike-slip faults are evident. This study summarizes the findings of two seismic surveys carried out in the Alanya-Mersin offshore region. Some 850 km of geophysical survey lines were compiled on these cruises. Based on the results determined from these surveys, the north and central part of Adana-Cilicia basin can be subdivided into eastern, central and western structural sub-basins separated by the Ecemiş fault complex in the east and the Anamur-Kormakiti structural high in the west at the same time. Results of this study also indicate that Ecemiş and Anamur-Kormakiti faults are active. Late Miocene regional compression was responsible for the compartmentation of this complex into the present arrangement and has initiated the rotational regime which has governed subsequent tectonic developments, notably the extensional behaviour of the NE-SW trending Ecemiş and Anamur-Kormakiti faults and the transpressive behaviour of the NNE-SSW trending border fault complex.  相似文献   

11.
刘江  张进江  郭磊  戚国伟 《岩石学报》2014,30(7):1899-1908
晚中生代,内蒙古大青山依次经历晚侏罗世盘羊山逆冲推覆、早白垩世呼和浩特变质核杂岩伸展、早白垩世大青山逆冲推覆断层及早白垩世以来高角度正断层复杂构造演化。其中,呼和浩特变质核杂岩韧性剪切带的冷却时间和抬升机制的制约尚不明确。本文在野外考察和显微构造分析基础上,采用逐步加热40Ar-39Ar定年法对韧性剪切带内不同单矿物的冷却年龄进行了测定。角闪石、白云母、黑云母和钾长石单矿物40Ar-39Ar冷却年龄处于120~116Ma之间。结合已有年龄数据及单矿物封闭温度,构建了韧性剪切带的冷却曲线。结果表明,韧性剪切带在122~115Ma期间存在一个明显的快速冷却过程。这一阶段快速冷却是与变质核杂岩拆离断层相关核部杂岩拆离折返作为大青山逆冲推覆断层上盘抬升的结果。  相似文献   

12.
The ENE-tilted Mesta half-graben contains a 3-km-thick section of Priabonian (Late Eocene) to Oligocene sedimentary and volcanic rocks that rest unconformably on basement metamorphic rocks along its west side. Basal strata dip 50–60° E and dip at progressively lower angles upward, indicating synrotational deposition. The southern part of the half-graben contains nested volcanic caldera complexes, formed during the deposition of the middle part of the sedimentary sequence, which have been rotated by about half the total rotation of the sedimentary succession. The half-graben is bounded on the east by a fault that steepens from more deeply exposed structural levels in the south (8–18° W) to shallower exposed structural levels in the north (70° W) and together with the rotation of Paleogene strata during deposition indicate the Mesta half-graben is underlain by a listric detachment fault, the Mesta detachment. Subhorizontal Middle Miocene strata that unconformably overlie tilted Paleogene strata yield an upper age limit to the extension. West and northwest of the Mesta half-graben are many other NNW-trending NE-tilted Paleogene half-grabens which we suggest are part of an important extended area in SW Bulgaria and eastern Macedonia that lies above one or more west-dipping detachment faults and date the beginning of Aegean extension in the southern Balkan region as at least as old as Priabonian. The Mesta detachment is oblique to the trend of a contemporaneous Paleogene magmatic arc in the southern Balkans and the origin of the detachment is probably related to gravitationally induced spreading of thickened hot arc crust and Hellenic trench roll back.  相似文献   

13.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

14.
This paper deals with the tectonic control on the hydrothermal system that gave rise to Sb–Hg ore deposits in the Monte Amiata area that was one of the most relevant mining district for the exploitation of mercury in Italy. The study area (Selvena mining district) is located in southern Tuscany (inner Northern Apennines) one of the most important mineralized area in the western Mediterranean region. Southern Tuscany was severely affected by Middle–Late Miocene low-angle normal faults, later dissected by Pliocene–Pleistocene faults, coeval magmatism (Late Miocene–Pleistocene) and hydrothermal activity (Pliocene–Present). The Selvena mining district is located south of Middle Pleistocene Monte Amiata volcanic complex. Our structural and kinematic study is based on the integration among fieldwork, borehole and mine data. The results highlight two Pleistocene–Holocene left-lateral transtensional shear zones linked by normal faults, defining a coeval pull-apart structure. Here, the Sb–Hg mineralization, transported by meteoric hydrothermal fluids mainly, is particularly diffuse and concentrated in the cataclasites and in damage zones of the normal faults. Furthermore, a widespread mineralization also occurs in the cataclasites of Miocene low-angle normal faults. Mine evidence suggests that ore-bearing fluids percolated through structural conduits located along the fault planes and resulting parallel to the intermediate stress axis. Geological structures and ore deposit distribution are related to a single hydrothermal circuit, with meteoric water channelled to depth through conduits parallel to the intermediate stress axis of the transcurrent shear zones; then, hydrothermal fluids mainly ascended through the almost vertical deformation zones located at the intersection between normal and strike-slip faults. Thus, hydrothermal fluids permeated also the Middle–Late Miocene cataclasites. This study shed light on the relationships between geological structures and mineralization in southern Tuscany and underlines the importance to investigate mine areas to understand hydrothermal fluids path.  相似文献   

15.
《Geodinamica Acta》1998,11(5):233-247
In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.  相似文献   

16.
Shmuel Marco   《Tectonophysics》2007,445(3-4):186-199
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.  相似文献   

17.
A belt of low-angle normal (or detachment) faults ~250 km long extends from the northern end of the Salton Trough, California to southern Laguna Salada, Baja California, Mexico. The detachment system is divided into two principal segments. The northern segment, here termed the “west Salton detachment system,” comprises top-to-the-east detachment faults along the eastern Peninsular Ranges that root under the Salton Trough. The southern segment, here termed the Laguna Salada detachment system, comprises top-to-the-west detachment faults in northeastern Baja California and the Yuha Desert region of the southwesternmost Salton Trough. Detachments of that system root under Laguna Salada and the Peninsular Ranges of northern Baja California. Both of these systems experienced a major episode of activity in late Miocene to Pleistocene time, synchronous with deposition of the Imperial and Palm Spring formations, and the Laguna Salada detachment system may still be active. Thus, their activity temporally overlapped, partly or completely, with activity on dextral faults of the San Andreas boundary between the Pacific and North American plates, and with accretion of new transitional crust. Some of the detachment faults in the northern segment may have had mid-Miocene normal slip and/or Cretaceous thrust or normal slip as well, although compelling evidence for either is lacking. These detachment faults are distinctly younger than detachments east of the San Andreas fault, which generally ceased activity by middle or late Miocene time and are overlapped by marine or lacustrine rocks (Bouse Formation); these units are equivalent in age to the syntectonic strata of the Salton Trough but are much thinner and essentially undeformed.  相似文献   

18.
In central eastern Anatolia which is located between Eurasia and Africa, the study of basin developments between late Eocene and early Miocene is of great importance for understanding the process of the closure of the Neo-Tethys Ocean and the formation of strike-slip faults and regional uplift. To study these, three basins were selected: the Sivas-Erzincan, Gürün-Akkisla-Divrigi (GAD), and Malatya basins. The study proposes that the opening of the GAD basin played a key role in the formation of the Ecemis fault, which started developing at the end of early Miocene, and in mountain uplift. All these basins are situated on continental blocks and oceanic crust, arranged from north to south as the Sakarya continent, the Izmir-Ankara-Erzincan ocean (Northern Neo-Tethys), the Kirsehir continent, the inner Tauride ocean, the Munzur-Binboga block, the Maden (=Berit) ocean, the Bitlis-Pütürge block, the Çüngüs ocean and the Arabian continent.The findings indicate that late Eocene-early Miocene successions in these basins were not deposited in foreland basins formed in front of the thrust faults associated with the closure of the ocean, as stated in previous studies. Rather, they were deposited in forearc and backarc basins related to the subduction which was effective until the end of early Miocene. The Sivas-Erzincan and Malatya basins, located on the inner Tauride and Maden (=Berit) oceans, were forearc basins, while the GAD basin situated on the Munzur-Binboga block was a backarc basin. These basins have parallel developments up to the end of early Miocene. While marine sediments were deposited in the Malatya and Sivas-Erzincan basins between late Eocene and early Miocene, terrestrial units began to settle in the GAD basin from the late Eocene and the deposition there is continuous until the end of the early Miocene.Collision of the Arabian and the Anatolian plates at the end of early Miocene (16-18 Ma) produced the left-strike slip Ecemis fault zone, which caused the lateral slip of sedimentary units in the Sivas-Erzincan and GAD basins over hundreds of kilometers. This event produced the first westward tectonic escape of the Anatolian plate prior to the north Anatolian fault (NAF) and the east Anatolian fault (EAF). The Gürün region located in the GAD basin was exhumed in late Miocene and this basin was broken. The Gürün region, which remains on the rising part of the Munzur-Binboga block, is not a different basin as stated earlier, but it is a part of the GAD basin, representing the central part of the GAD basin lake, as indicated by the fine grained deposits (limestones and clay) that occur in the Gürün area.  相似文献   

19.
《Geodinamica Acta》2013,26(3-4):283-297
Western Turkey is a place of active continental extension, characterized by the occurrence of several WNW-ESE-trending major grabens. The central part of the northern edge of the Edremit Graben is delineated by various geological units, namely the metamorphic Kazda? Massif, the Mid-Cretaceous Çetmi mélange, the sedimentary Küçükkuyu formation, and loose Plio-Quaternary deposits. Detailed structural and sedimentological study suggests a two-stage extensional evolution of the area, separated by a short break in the tectonic regime. The first stage, possibly related to back-arc extension and/or orogenic collapse, is marked by the activity of a newly described low-angle detachment fault, the ?elale detachment fault, from the latest Oligocene onward. The fault plane, separating the mylonitized rocks of the Kazda? Massif in the footwall from the unmetamorphosed Çetmi mélange and Küçükkuyu formation in the hanging wall, must have played a significant role in the initial exhumation processes of the Kazda? Massif at that time. The Lower Miocene syntectonic Küçükkuyu formation has recorded the initiation and filling up of a small basin, which has developed in a typical supra-detachment basin, above the detachment fault. After a short phase of possible compression and erosion, the second stage—which marks the onset of neotectonic activity—is marked by the development of Plio-Quaternary step-like normal faults, which cut through all the previous units. Coarse, loose sediments were deposited following the fault activity. These local results are extrapolated to apply to the entire Edremit Graben. In that case, its evolution is seen as the succession of two extensional stages, characterized by distinct structural and sedimentological patterns, and possibly separated by a short compressional phase.  相似文献   

20.
The linkage between the development of south-facing Cretan graben and large-scale detachment faulting in the southern Aegean is unknown. Widespread Serravallian deposits in the Ierapetra graben of Crete supply constraints to Middle Miocene graben development in the southern Aegean. The Ierapetra graben, and by inference the Cretan graben in general, were hitherto believed to have formed as a result of sinistral transpression during N–S shortening. We argue that the formation of the Cretan graben is due to N–S extension. The south-dipping, N–S-extending Kritsa normal fault served as the master fault controlling graben development in the Ierapetra graben. The Kritsa normal fault is either an antithetic fault related to the top-N Cretan detachment or a synthetic fault associated with the top-S Ios detachment. The overall geometry and timing relationships lead us to favour a connection with the Ios detachment, which in turn implies a large-scale displacement on the Ios detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号