首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Precambrian basement rocks exposed along Qift–Quseir asphaltic road, central Eastern Desert of Egypt, exhibit two contrasted tectonic units, each of which has its own lithology structural style and grade of metamorphism. They are intruded by dolerite and diorite dykes. The alkali (Na2O+K2O) and TiO2 contents increase whereas Al2O3, FeO, MgO, CaO and MnO decrease with increasing SiO2 from dolerites to diorites. The trace elements Ti, Zr, Cr, Y and Ni indicate that the dolerites are tholeiitic with slight tendency toward calc-alkaline and formed from basaltic magma in an active continental margin, while diorites are calc-alkaline and were formed by fractional crystallisation of high-alumina basaltic magma in an island arc and active continental margin tectonic environment where they probably represent the forerunner of G1 granites. The molecular ratios Mg values (MgO×100/MgO+FeO) of dolerites range from 47 to 49 while those of diorite range from 51 to 59, indicating that the dolerite and diorite have suffered mild fractionation. Mineral chemistry for the diorites shows that the amphiboles are classified as magnesiohornblende and the plagioclase composition is An39–42 (i.e. the narrow range indicate that the pluton has not suffered extensive fractional crystallisation). The Al content of amphibole displays significant variation with pressure and temperature, also the change of the Ca/(Ca+Na) ratio of plagioclase is dependent on temperature. The amphibole–plagioclase geothermobarometer suggested the P-T formation conditions of studied dykes as 2 kbar and 600 °C.  相似文献   

2.
Two brecciated shear zones (NNW-SSE) are found crosscutting cataclastic rocks. The cataclastic rocks (3.0 km2) occupy the core of the granitic pluton and enclose a roof pendant of mafic-ultramafic rocks. The NNW-SSE-extending lamprophyre dykes vary in thickness from 0.5 m to 1 m and up to 800 m long, cutting the cataclastic rocks and are composed mainly of plagioclases, amphiboles, relics of pyroxenes and K-feldspar phenocrysts embedded in fine-grained groundmass. They are characterized as being peraluminous, calc-alkaline in composition (chemical trap) and enriched in calcite, sulfide and P2O5. The lamprophyres were affected by hydrothermal alteration (chlorite-carbonate alteration) while the cataclastic rocks were affected by diagenetic alteration (K-feldspar-albite alteration). Uranium mineralization is the product of hydrothermal events and has been investigated by X-ray diffraction (XRD) and environmental scanning electron microscopy (ESEM), involving primary uranium minerals (U3O8) and secondary uranium minerals (uranophane and beta-uranophane, kasolite, torbernite, autonite and meta-autonite) in addition to U- bearing minerals (astrocyanite, betafite and fergusonite). The presence of different mineral parageneses associated with clay minerals indicates that the lamprophyres were subjected to acidic and alkaline mineralizing solutions. Moreover, the U-Zr/U, U-Ce/U values show negative correlations, confirming U-enrichment in both cataclastic rocks and shear zones while the Th-eU/eTh, Th-Zr/Th and Th-Ce/Th values show negative correlations, indicating that the U-bearing solutions are rich in Th in the cataclastic rocks only.  相似文献   

3.
The Sukari gold mine (18.8 Mt @ 2.14 g/t Au) is located 15 km west of the Red Sea coast in the southern central Eastern Desert of Egypt. The vein-type deposit is hosted in Late Neoproterozoic granite that intruded island-arc and ophiolite rock assemblages. The vein-forming process is related to overall late Pan-African shear and extension tectonics. At Sukari, bulk NE–SW strike-slip deformation was accommodated by a local flower structure and extensional faults with veins that formed initially at conditions of about 300 °C and 1.5–2 kbar. Gold is associated with sulfides in quartz veins and in alteration zones. Pyrite and arsenopyrite dominate the sulfide ore beside minor sphalerite, chalcopyrite and galena. Gold occurs in three distinct positions: (1) anhedral grains (GI) at the contact between As-rich zones within the arsenian pyrite; (2) randomly distributed anhedral grains (GII) and along cracks in arsenian pyrite and arsenopyrite, and (3) large gold grains (GIII) interstitial to fine-grained pyrite and arsenopyrite. Fluid inclusion studies yield minimum vein-formation temperatures and pressures between 96 and 188 °C, 210 and 1,890 bar, respectively, which is in the range of epi- to mesothermal hydrothermal ore deposits. The structural evolution of the area suggests a long-term, cyclic process of repeated veining and leaching followed by sealing, initiated by the intrusion of granodiorite. This cyclic process explains the mineralogical features and is responsible for the predicted gold reserves of the Sukari deposits. A characteristic feature of the Sukari gold mineralization is the co-precipitation of gold and arsenic in pyrite and arsenopyrite.Editorial handling: H. Frimmel  相似文献   

4.
5.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

6.
The Eastern Desert of Egypt represents a remote arid area which is scarce in water resources. The area is characterized by many mining sites to exploit the phosphate deposits; thus, these activities can generate groundwater contaminants. The main objective of the present study is discussing the effect of the mining activities and phosphate bearing rocks on groundwater. The obtained results pointed out that the water bearing formations can be distinguished as Quaternary alluvial, Oligocene sandstone, Campanian phosphate limestone (Duwi Formation), and Precambrian basement rocks. Some of the investigated groundwater shows relatively high concentrations of trace elements compared to other samples, such as Pb, Zn, Cu, Cr, Ni, and Sr. This is consistent with the analyses of phosphate rocks which are also enriched in the same trace elements. The high groundwater salinity is due to evaporation, limited re-charge, and leaching of salts in rocks. The results of speciation modeling reveal that majority of groundwater samples are supersaturated with calcite, aragonite, and dolomite, and some samples are also at equilibrium or supersaturated with hydroxyapatite. The groundwater quality in the study area evaluated for human drinking, livestock and poultry domestic, and industrial purposes is not suitable in most wells. It is obvious that the groundwater contamination occurs when drilling wells penetrate the phosphate bearing beds and not only at mining activity sites. Therefore, it is recommended to avoid any groundwater exploration from the Duwi Formation and also select the drilling sites outside the mining areas.  相似文献   

7.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

8.
The south Solaf zone in SW Sinai comprises a metasedimentary sequence of metagraywackes intercalated with minor metavolcanic sheets, metasiltstones, meta-arenites, and calc–silicates. The metavolcanics (basalt–andesite) show high- to medium-K calc–alkaline nature. They exhibit distinctive Nb-Ta negative anomalies relative to enriched LILE, being highly similar to active continental margin lavas, but they also have the characteristics of rift-related magmatism. Magmas of similar composition are interpreted to be formed in an extensional environment and their source regions are zones of enriched subcontinental lithosphere. The metasediments are poor to moderate sorting, intercalated to the north with minor impure calcareous layers. Geochemical investigation shows that they are immature to semi-mature sediments derived from a source of mafic to felsic composition. These metasediments are chemically similar to the active continental margins and are comparable to the Feiran gneisses and metagraywackes that were deposited before 800 Ma in an extensional environment. The investigated rocks suffered LP-HT amphibolite facies metamorphism. The P-T estimates using various thermobarometric calibrations gave temperatures of 554–610 °C and pressures of 2.2–4.0 kbar.  相似文献   

9.
《Gondwana Research》2011,19(4):583-595
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced ∼ 600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at ∼ 730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt (∼ 810–780 Ma and ∼ 730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

10.
Chronology of Neoproterozoic volcanosedimentary successions remains controversial for many regions of the Arabian–Nubian Shield, including the Dokhan Volcanics of NE Egypt. New U–Pb zircon SHRIMP ages have been obtained for 10 silica-rich ignimbrites and two subvolcanic dacitic bodies, mapped as Dokhan Volcanics, from the North Eastern Desert of Egypt. Crystallization ages range between 592 ± 5 and 630 ± 6 Ma (Early Ediacaran). Apparently, the late consolidation of the Arabian–Nubian Shield was accompanied by the evolution of isolated volcanic centres and basin systems which developed during a period of approx. 40 Ma, independently in space and time and probably under changing tectonic regimes. The obtained age data together with other previously published reliable ages for Dokhan Volcanics suggest two main pulses of volcanic activity: 630–623 Ma and 618–592 Ma. Five samples contain inherited zircons, with ages of 669, 715–746, 847 and 1530 Ma, supporting models that North Eastern Desert crust is mainly juvenile Neoproterozoic crust.  相似文献   

11.
Summary Late Neoproterozoic garnet-bearing leucogranites are developed locally along thrust faults in the South Eastern Desert, Egypt. This work presents field observations, whole rock major and trace element abundances, Rb–Sr isotope data and mineral chemistry for three occurrences in the Sikait-Nugrus area. Field observations show that the leucogranites cut the faults and their contact with the country rocks is sharp with no indication of contact metamorphism. They were intruded into a low-grade metamorphosed ophiolitic melange and a high-grade metamorphosed metasedimentary succession of biotite schist composition. Numerous biotite schist enclaves, having irregular and diffuse contacts, are recorded within the leucogranites. Whole rock Rb–Sr ages of the leucogranites from two different localities are 610±20 and 594±12Ma respectively; they are interpreted as emplacement ages. The leucogranites contain more than 70% SiO2, and they are strongly peraluminous (A/CNK>1.1) with low TiO2, Fe2O3*, MgO, CaO, Ba, Sr, LREE, Eu/Eu* and Sr/Ba and high Rb, Rb/Zr, Rb/Sr and Rb/Ba. These geochemical parameters and the low initial 87Sr/86Sr ratios (0.703) indicate crustal derivation by dehydration partial melting from a juvenile protolith similar to the exposed biotite-rich metasediments. Models for the tectonic setting of these leucogranites suggest their emplacement during an extensional tectonic stage that follows continental collision. It is proposed that crustal heating, caused by decompression along shear zones, is responsible for the production of these granitic melts. The results support previous hypotheses and further document a regional late Neoproterozoic extensional tectonic event, which is probably related to the initial break-up of Gondwana.  相似文献   

12.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   

13.
A geophysical signature associated with Nb–Ta–Sn mineralization of G. (G. : abbreviation to word Gebel which means mountain in Arabic) Nuweibi area, located the Central Eastern Desert of Egypt is presented. This signature was established by an integration of airborne gamma ray spectrometric and magnetic data. Variations seen in the gamma ray spectrometric data are used as a base to study the three granitic suites: younger-, albite-, and older granites in G. Nuweibi area. Graphical techniques such as frequency histograms and box-plots are used to visualize the shape of the distribution and determine the anomaly thresholds of the three radioelements eU, eTh, and K% data in these granitic suites. The box-plot graphical representations and calculations made on data sets indicate that no samples have eU values above the thresholds, i.e., no outliers representing values of the box-plots. Nuweibi albite granite is associated with a gamma ray response that includes the strongest eU, eTh, K%, and eTh/K ratio anomalies in the study area. K–eTh plot shows that the albite granite has a higher eTh concentration than the older and younger granites. The increase in K concentration and raise in Th/K ratio of Nuweibi albite granite points to unusual geological processes leading to mineralization and reflects the highly fractionated nature of the magma which results in thorium enrichment. This also reflects that K alteration associated with Nb–Ta–Sn mineralization is both poorly focused spatially and very much weaker than observed in any other mineralizing districts. The distribution of magnetic sources and their locations and depths in the study region are determined by Euler deconvolution and analytical signal techniques. Good clustering of Euler solutions were obtained using SI?=?0.5 and SI?=?1.0 for most of the features in the area under consideration. The solutions obtained have shown magnetic sources which can be related to the impact structure whose depths varies between ground surface to 1.66 km. The analytical signal revealed that the metamorphosed basic rocks (mainly olivine metagabbro), serpentinite and dyke bodies are the main sources of high magnetic anomalies, particularly within the area east G. Nuweibi region.  相似文献   

14.
Sn–W deposit of the Mueilha mine is one of many other Sn–W deposits in the Eastern desert of Egypt that associated with albite granite. Two forms of Sn–W mineralizations are known at the Mueilha Sn-mine area, namely fissure filling quartz veins and greisen. Cassiterite and/or wolframite, sheelite, and beryl are the main ore minerals in the greisen and quartz veins. Subordinate chalcopyrite and supergene malachite and limonite are also observed in the mineralized veins. To constrain the P–T conditions of the Sn–W mineralizations, fluid inclusions trapped in quartz and cassiterite, have been investigated. The following primary fluid inclusion types are observed: CO2-rich, two-phase (L?+?V) aqueous, and immiscible three-phase (H2O–CO2) inclusions. Low temperature and low salinity secondary inclusions were also detected in the studied samples. Microthermometric results revealed that Sn–W deposition seem to have taken place due to immiscibility at temperature between 260°C and 340°C, and estimated pressure between 1.2 to 2.2 kb. Microthermometric results of fluid inclusions in fluorite from fluorite veins illustrated that fluorite seems to be deposited due to mixing of two fluids at minimum temperature 140°C and 180°C, and estimated minimum pressure at 800 bars.  相似文献   

15.
Ages are used to constrain the temporal evolution of the Meatiq Gneiss Dome, Eastern Desert, Egypt, by dating (ID-TIMS) pre-, syn-, and post-tectonic igneous rocks in and around the dome. The Um Ba’anib Orthogneiss, comprising the deepest exposed structural levels of the dome, has a crystallization age of 630.8 ± 2 Ma. The overlying mylonites are interpreted to be a thrust sheet/complex (Abu Fannani Thrust Sheet) of highly mylonitized metasediments (?), migmatitic amphibolites, and orthogneisses with large and small tectonic lenses of less-deformed intrusives. Two syn-tectonic diorite lenses in this complex have crystallization ages of 609.0 ± 1.0 and 605.8 ± 0.9 Ma, respectively. The syn-tectonic Abu Ziran diorite, cutting across the tectonic contact between mylonite gneisses of the Abu Fannani Thrust Sheet and a structurally overlying thrust sheet of eugeoclinal rocks (“Pan-African nappe”), has a magmatic emplacement age of 606.4 ± 1.0 Ma. Zircons from a gabbro (Fawakhir ophiolite) within the eugeoclinal thrust sheet yielded a crystallization age of 736.5 ± 1.2 Ma. The post-tectonic Fawakhir monzodiorite intrudes the ophiolitic rocks and has an emplacement age of 597.8 ± 2.9 Ma. Two other post-tectonic granites, the Arieki granite that intrudes the foliated Um Ba’anib Orthogneiss, and the Um Had granite that cuts the deformed Hammamat sediments, have emplacement ages of 590 ± 3.1 and 596.3 ± 1.7 Ma, respectively. We consider formation of the Meatiq Gneiss Dome to be a young structural feature (<631 Ma), and our preferred tectonic interpretation is that it formed as a result of NE–SW shortening contemporaneous with folding of the nearby Hammamat sediments around 605–600 Ma, during oblique collision of East and West Gondwana.  相似文献   

16.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   

17.
Wadi Baba–Wadi Shalal area locates in the westcentral part of Sinai, Egypt. It is covered by a Precambrian basement rocks comprise the northern part of the Precambrian Arabo-Nubian crystalline massive. The lithologic and structural setting of the investigated area was interpreted from the digital Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data. The structural lineament analyses for the lithologic units and their relationships to the high-radioactivity zones (HRZ) and the characterizations of HRZ of the study area are the main tasks of this article. Extraction algorithm was applied using Geomatica PCI package under the user defined parameters. The extracted structural lineaments have been evaluated and chicked using the visual interpretation and published works. The short-wave infrared spectral ETM+ band-7 was selected as an optimum data for automatic lineaments extraction since it scored the highest lineament frequency (1856) compared to the other visible and near infrared bands. The aeroradiometric color raster total count equivalent thorium (eTh) and equivalent uranium (eU) maps were used to delineate the highest radioactivity zones of the study area. A selective image processing technique (SIPT) is a new approach in Geomatica (9.1), which gives rise to valuable results in this work. The SIPT was carried out for the subset of the ETM+ data of the highest radioactivity zones. The spatial distribution of the structural lineament pattern maps for some low-radioactivity zones (LRZ) and for the highest radioactivity zones of the study area are prepared with their frequency rose diagrams. The NE–SW trend is the predominant structural lineaments trend in the investigated area. The NE–SW to the ENE–WSW directions are the predominant structural lineament trends in both the LRZ and the HRZ. These high-radioactivity zones of the investigated area are characterized by high lineaments density and lineaments-intersection density, restricted to Um Bogma Formation and younger granitic rocks and are not controlled by structural lineament trends.  相似文献   

18.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

19.
The genus Assilina is a taxon within the Nummulitacea that appeared early in the Ypresian (Early Eocene) and continued until the end of the Lutetian (Middle Eocene). Thus, this taxon could be useful for the chronostratigraphy of this time interval. Lower Eocene rocks in southern Galala, Egypt are exposed at Bir Dakhl. This section includes marl sediments with debris flow shallow-marine facies deposits laid down during early Eocene times and includes fossils of large foraminifera: Assilina placentula Deshayes, 1838 and Nummulites burdigalensis de la Harpe, 1926. These are systematically treated, described and illustrated. Nummulites burdigalensis belongs to the N. burdigalensis group, and Assilina placentula belongs to the group of Assilina exponens. This assumption is based on qualitative morphology and quantitative measurements. Both species, together with Operculina libyca Schwager, 1883, enable the assignment of the Bir Dakhl (D5-40 Section) to the Early Eocene, Ypresian (SBZ10 of Serra- Kiel et al., 1998) supporting an earlier opinion that Assilina placentula belongs to that zone in the calibrated larger foraminiferal biostratigraphic zonation.  相似文献   

20.
High in sodium and low in potassium (Na_2O/ K_2O>1), the charnockitic gneiss series in theSantunying- Taipingzhai area, eastern Hebei province, consists of hypersthene- quartz- diorite,hypersthene-granodiorite and hypersthene-plagioclase-granite. Geological, petrological and large ion lithophileelement(LILE), high field strength element (HFSE) and REE geochemical studies suggest that themedium-coarse-grained hypersthene-granodiorite is the product of crystallization of anatectic magmas of thesame composition. Under granulite facies conditions, the equilibrium crystallization differentiation of themagmas yielded the early crystallization phase-high-SiO_2, LILE-depleted, low-∑REE, positive Eu anomalyand REE- saturated hypersthene- plagioclase- granite. The residual phase, coarse- grained to pegmatitichypersthene- granodiorite, is marked by low SiO_2, LILE-enrichment, high ∑REE and REE-undersaturation.These rocks and hypersthene-quartz-diorite enclaves constitute the sodium-charnockitic gneiss series in easternHebei province. Model calculation for trace elements in the granitoids was applied. On the basis of a systematicgeological study, the equation for calculation was chosen, the source magma was determined and the partitioncoefficients were obtained. The resulting curves are entirely consistent with those observed in the patterns of ac-tual rocks. The study indicates that whole-rock REE patterns can not be used directly in the comparison of thesources and genesis of granitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号