首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

2.
Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ18O values were calculated from the δ18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry.The δD values measured in all samples range between ? 110 and ? 90‰, similar to Holocene meteoric water. Coupled δ18O–δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water–rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.  相似文献   

3.
Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However, not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer insolation, and that the onset of deglacial warming at ~ 19 kyr BP is parallel in timing with other continental records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~ 15 °C at the onset of the warming to a maximum of ~ 27 °C in the early Holocene (~ 12 kyr BP), in agreement with the temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer insolation, and may contribute to a better understanding of the mechanisms controlling ice age terminations.  相似文献   

4.
This paper presents the use of stable isotopes of water for hydrological characterization and flow component partitioning in the Red River Delta (RRD), the downstream section of the Red River. Water samples were collected monthly during 2015 from the mainstream section of the river and its right bank tributaries flowing through the RRD. In general, δ18O and δ2H river signatures were depleted in summer–autumn (May–October) and elevated in winter–spring (November–April), displaying seasonal variation in response to regional monsoon air mass contest. The Pacific equatorial–maritime air mass dominates in summer and the northern Asia continental air mass controls in winter. Results show that water of the RRD tributaries stems solely from local sources and is completely separated from water arriving from upstream subbasins. This separation is due to the extensive management of the RRD (e.g., dykes and dams) for the purposes of irrigation and inundation prevention. Mainstream river section δ18O and δ2H compositions range from ?10.58 and ?73.74‰ to ?6.80 and ?43.40‰, respectively, and the corresponding ranges inside the RRD were from ?9.35 and ?64.27‰ to ?2.09 and ?15.80‰. A combination of data analysis and hydrological simulation confirms the role of upstream hydropower reservoirs in retaining and mixing upstream water. River water inside the RRD experienced strong evaporation characterized by depleted d‐excess values, becoming negative in summer. On the other hand, the main stream of the Red River has d‐excess values around 10‰, indicating moderate evaporation. Hydrograph separation shows that in upstream subbasins, the groundwater fraction dominates the river flow composition, especially during low flow regimes. Inside the RRD, the river receives groundwater during the dry season, whereas groundwater replenishment occurs in the rainy season. Annual evaporation obtained from this hydrograph separation computation was about 6.3% of catchment discharge, the same order as deduced from the difference between subbasin precipitation and discharge values. This study shows the necessity to re‐evaluate empirical approaches in large river hydrology assessment schemes, especially in the context of climate change.  相似文献   

5.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   

6.
This study analyzes the stable isotopic compositions of hydrogen and oxygen (δ2H, δ18O) in montane meteoric waters including precipitation and stream water of central Taiwan to identify hydrological processes in montane catchments. Results of precipitation demonstrate that monsoon and altitude effects are two principal processes affecting δ and deuterium excess (dE) values of inland precipitation in central Taiwan. Furthermore, slope and intercept values of summer and winter local meteoric water line are modified by secondary evaporation effects such as moisture recycling and raindrop evaporation. Additionally, stream water's results indicate that differences in δ values among stream waters reflect isotopic altitude effect whereby lower values are more evident in stream water originating from high‐elevation catchments than low‐elevation catchments. Comparison of the isotopic results between precipitation and stream water indicates that summer precipitation containing recycled moisture is the most important water source for the studied stream waters and indicates that catchment effect and base flow contribution are the two major hydrological processes affecting mountain stream hydrology. The hydrological processes identified by the isotopic study re‐stress the important role of forests in mountain hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Tektites are terrestrial natural glasses produced during a hypervelocity impact of an extraterrestrial projectile onto the Earth's surface. The similarity between the chemical and isotopic compositions of tektites and terrestrial upper continental crust implies that the tektites formed by fusion of such target rock. Tektites are among the driest rocks on Earth. Although volatilization at high temperature may have caused this extreme dryness, the exact mechanism of the water loss and the behavior of other volatile species during tektite formation are still debated. Volatilization can fractionate isotopes, therefore, comparing the isotope composition of volatile elements in tektites with that of their source rocks may help to understand the physical conditions during tektite formation.For this study, we have measured the Zn isotopic composition of 20 tektites from four different strewn fields. Almost all samples are enriched in heavy isotopes of Zn compared to the upper continental crust. On average, the different groups of tektites are isotopically distinct (listed from the isotopically lightest to the heaviest): Muong-Nong type indochinites (δ66/64Zn = 0.61 ± 0.30‰); North American bediasites (δ66/64Zn = 1.61 ± 0.49‰); Ivory Coast tektites (δ66/64Zn = 1.66 ± 0.18‰); the Australasian tektites (others than the Muong Nong-type indochinites) (δ66/64Zn = 1.84 ± 0.42‰); and Central European moldavites (δ66/64Zn = 2.04 ± 0.19‰). These results are contrasted with a narrow range of δ66/64Zn = 0–0.7‰ for a diverse spectrum of upper continental crust materials.The elemental abundance of Zn is negatively correlated with δ66/64Zn, which may reflect that isotopic fractionation occurred by evaporation during the heating event upon tektite formation. Simple Rayleigh distillation predicts isotopic fractionations much larger than what is actually observed, therefore, such a model cannot account for the observed Zn isotope fractionation in tektites. We have developed a more realistic model of evaporation of Zn from a molten sphere: during its hypervelocity trajectory, the molten surface of the tektite will be entrained by viscous coupling with air that will then induce a velocity field inside the molten sphere. This velocity field induces significant radial chemical mixing within the tektite that accelerates the evaporation process. Our model, albeit parameter dependent, shows that both the isotopic composition and the chemical abundances measured in tektites can be produced by evaporation in a diffusion-limited regime.  相似文献   

8.
Precipitation is a major component of the hydrologic cycle in arid desert areas. To date, however, few studies have been conducted on investigating the isotope characteristics and moisture sources of precipitation in arid desert environments. The Alxa Desert Plateau is a critical arid desert area in North China. This study is the first to analyse the stable isotopic composition of precipitation to identify the sources of atmospheric moisture over this plateau. Our results show that the δD and δ18O values of precipitation across the plateau change greatly at both daily and monthly timescales, and exhibit seasonal variations. Among the main meteorological parameters, atmospheric temperature is the most predominant factor controlling the isotopic composition and the δD–δ18O relationship of local precipitation. Analyses of the precipitation isotopes with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model reveal that (a) the westerly and polar moisture sources are the dominant controls on summer and winter precipitation and (b) the evaporation of local lake water significantly affects winter precipitation even though it only represents a small amount. Based on the isotope data of 2013–2016 precipitation, a local meteoric water line (LMWL) is derived: δD = (8.20 ± 0.22)·δ18O + (8.15 ± 2.16)‰ for the study site. Compared to the global meteoric water line, the LMWL has a greater slope and lower d‐excess. This can be explained by admixing of atmospheric moisture resulting from the evaporation of local lake water. Based on this LMWL, we are able to trace that groundwater of the Badain Jaran Desert originates from the surrounding mountains with altitudes of <4,000 m. The newly derived LMWL shows that the recharge altitudes of desert groundwater are overestimated on the basis of the previous LMWLs. This study not only provides insights into the hydrological cycle but also offers guidance for water resource management in arid desert areas of China. Additionally, this study provides techniques that can be applied to the analyses of precipitation isotopes in similar arid regions of the world.  相似文献   

9.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

10.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

11.
The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.  相似文献   

12.
Li isotopic compositions of magmatic rocks have gained considerable attention recently as probes of mantle-scale processes. However, the concentrations and isotopic composition of Li in mantle minerals from mid-ocean ridges remain relatively unconstrained. This is largely because of the general presence of seawater alteration in abyssal peridotites. Lithium elemental and isotopic compositions for mineral separates of coexisting olivine, clinopyroxene, orthopyroxene and bulk rocks of serpentine-free Gakkel Ridge peridotites were investigated. Bulk rocks have Li contents of 1.6 to 2.7 ppm and δ7Li values of 3 to 5‰, which fall within the range of reported normal pristine “MORB mantle” values. Lithium concentrations vary in the order cpx (2.1–4.7 ppm) > opx (0.9–1.7 ppm)  olivine (0.4–0.9 ppm), the opposite found in “equilibrated” mantle peridotite xenoliths (Seitz and Woodland, 2000). The Li isotopic compositions indicate a systematic mineral variation with δ7Liolivine (7.14‰–15.09‰) > δ7Liopx (1.81‰–3.66‰) > δ7Licpx (?2.43‰ ? ?0.39‰). The δ7Li values of cpx are negatively correlated with their Li concentrations with the lightest value for the most enriched cpx grains. There is a first order negative linear correlation between Δolivine–cpx7Liolivine ? δ7Licpx) and ol/cpxD (Liolivine/Licpx).Numerical simulations indicate that the observed systematic inter-mineral variations of Li concentrations and isotopic compositions could be explained by a cooling driven diffusive redistribution between minerals in a closed system if there is a temperature dependent partitioning of Li between olivine and clinopyroxene. The studied Gakkel Ridge abyssal peridotites may alternatively have cooled under a variable cooling rate with a rapid cooling before the Li system was closed, which is less likely given the tectonic setting. Our calculations confirm that Li systematics in minerals, especially in coexisting mineral phases could potentially be used as a mantle geospeedometer, even for slowly cooled mantle rocks.  相似文献   

13.
Water samples from the Yamuna and its tributaries, one of the major river systems draining the Himalaya, have been analysed for their stable oxygen and hydrogen isotopes during three seasons (summer, monsoon and post‐monsoon). The data show clear seasonal and altitudinal variations; waters from higher altitudes and those collected during monsoon season are characterized by relatively depleted isotopic composition. Regression analysis of δD–δ18O data of samples collected during summer and monsoon seasons shows that the slope of the best‐fit lines are nearly identical to those of precipitation at New Delhi for the same period. The similarity in their slopes suggests that the isotopic composition of precipitation contributing water to these rivers are reasonably well preserved in both monsoon and non‐monsoon seasons, however, during the non‐monsoon period both rainfall and river waters carry signatures of evaporation. The ‘deuterium excess’ in river waters during the three seasons though overlap with each other, the values during October are higher. This can be understood in terms of recycled moisture contributions to precipitation. The ‘altitude effect’ for δ18O in these waters is determined to be 0·11‰ per 100 m, a factor of about two less than that reported for the Ganga source waters from similar altitudinal range. The variability in altitude effects in rivers draining the Himalaya seems to be controlled by the ‘amount effect’ associated with the monsoon. The significant spatial variability in altitude effect in these river basins, which are a few hundred kilometers apart, suggests that reconstruction of palaeoelevation in the Himalaya, based on δ18O‐altitude gradients, would depend critically on its proper assessment in the region. This study has established a relationship between total cation abundance and δ18O in waters of the Yamuna mainstream; total cations (corrected for cyclic components) double for a 1·4 km decrease in altitude as the Yamuna flows downstream. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

16.
Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ30Si and δ18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (?0.64‰ < δ30Si < ?0.01‰ and + 8.6‰ < δ18O < + 11.9‰) to silicified basalts (δ30Si and δ18O values as high as + 0.81‰ and + 15.6‰, respectively). Cherts generally have positive isotope ratios (+ 0.21‰ < δ30Si < + 1.05‰ and + 10.9 < δ18O < + 17.1), except two cherts, which have negative δ30Si values, but high δ18O (up to + 19.5‰).The pronounced positive correlations between δ30Si, δ18O and SiO2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6‰ to 15.6‰ is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.  相似文献   

17.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

19.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   

20.
Estimating past elevation not only provides evidence for vertical movements of the Earth's lithosphere, but also increases our understanding of interactions between tectonics, relief and climate in geological history. Development of biomarker hydrogen isotope-based paleoaltimetry techniques that can be applied to a wide range of sample types is therefore of continuing importance. Here we present leaf wax-derived n-alkane δD (δDwax) values along three soil altitudinal transects, at different latitudes, in the Wuyi, Shennongjia and Tianshan Mountains in China, to investigate δDwax gradients and the apparent fractionation between leaf wax and precipitation (εwax-p).We find that soil δDwax track altitudinal variations of precipitation δD along the three transects that span variable environment conditions and vertical vegetation spectra. An empirical δDwax-altitude relation is therefore established in which the average δDwax lapse rate of ? 2.27 ± 0.38‰/100 m is suitable for predicting relative paleoelevation change (relative uplift). The application of this empirical gradient is restricted to phases in the mountain uplift stage when the atmospheric circulation had not distinctly changed and to when the climate was not arid. An empirical δDwax–latitude–altitude formula is also calculated: δDwax = 3.483LAT ? 0.0227ALT ? 261.5, which gives the preliminary spatial distribution pattern of δDwax in modern China.Mean value of εwax-p in the extreme humid Wuyi Mountains is quite negative (? 154‰), compared to the humid Shennongjia (? 129‰) and the arid (but with abundant summer precipitation) Tianshan Mountains (? 130‰), which suggests aridity or water availability in the growing season is the primary factor controlling soil/sediment εwax-p. Along the Tianshan transects, values of εwax-p are speculated to be constant with altitude; while along the Wuyi and Shennongjia transects, εwax-p are also constant at the low-mid altitudes, but become slightly more negative at high altitudes which could be attributed to overestimates of precipitation δD or the vegetation shift to grass/conifer.Additionally, a reversal of altitude effect in the vertical variation of δDwax was found in the alpine zone of the Tianshan Mountains, which might be caused by atmospheric circulation change with altitude. This implies that the paleo-circulation pattern and its changes should also be evaluated when stable isotope-based paleoaltimetry is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号