首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
典型小型水库表层沉积物重金属分布特征及生态风险   总被引:1,自引:1,他引:1  
以典型乡镇水库通济桥水库表层沉积物为研究对象,在分析其中As、Cd、Cr、Cu、Hg、Ni、Pb和Zn等有毒、有害重金属分布特征的基础上,分析重金属来源,评价重金属污染程度及其潜在生态危害.结果表明:通济桥水库表层沉积物中,上述8种重金属均存在一定程度的污染,坝前和入库区污染物蓄积更为明显.其中,Hg和Cd的污染范围较广、污染程度较严重.受重金属Hg和Cd的影响,水库表层沉积物存在中等程度的重金属生态危害风险,其中坝前区域已处于强风险等级.为保障水库水体水质安全,防范重金属污染应提到当前水库管理工作的重要位置.  相似文献   

2.
Abstract

A water balance model of Lake Victoria that can be used to assess rainfall from lake level, is derived. The model utilizes satellite estimates of rainfall directly over the lake. The model, initially derived and calibrated for the period 1956–1978, is reformulated here in such a way that all water balance terms except evaporation can be calculated from a combination of catchment rainfall and level of the lake. The reformulated model is validated and used to predict lake level fluctuations during the period 1931–1994. An error analysis is also performed. The model is then “inverted” to solve for mean rainfall conditions during various intervals of changing lake levels. For modern periods with known rainfall conditions, the error in model estimates is of the order of 1%.  相似文献   

3.
Caffeine has been associated with wastewater pollution in temperate and subtropical locations, but environmental caffeine concentrations in tropical locations have not been reported. The objectives of this study were to measure caffeine and agricultural pesticide (carbaryl, metalaxyl, and metribuzin) concentrations in environmental waters on the tropical north shore of Kauai (Hawaii, USA) and assess whether patterns in caffeine concentration were consistent with a wastewater caffeine source. Groundwater, river, stream and coastal ocean samples were collected in August 2006 and February 2007. Caffeine was detected in all August 2006 samples and in 33% of February 2007 samples at concentrations up to 88 ng L−1. Metribuzin was detected in five samples collected in February 2007. Carbaryl and metalaxyl were not detected in any sample. Caffeine was not detected in offshore ocean samples or river samples upstream of human development. A positive correlation between caffeine and enterococci suggested a possible wastewater caffeine source.  相似文献   

4.
As human water demand is increasing worldwide, pressure on available water resources grows and their sustainable exploitation is at risk. To mimic changes in exploitation intensity and the connecting feedbacks between surface water and groundwater systems, a dynamic attribution of demand to water resources is necessary. However, current global-scale hydrological models lack the ability to do so. This study explores the dynamic attribution of water demand to simulated water availability. It accounts for essential feedbacks, such as return flows of unconsumed water and riverbed infiltration. Results show that abstractions and feedbacks strongly affect water allocation over time, particularly in irrigated areas. Also residence time of water is affected, as shown by changes in low flow magnitude, frequency, and timing. The dynamic representation of abstractions and feedbacks makes the model a suitable tool for assessing spatial and temporal impacts of changing global water demand on hydrology and water resources.  相似文献   

5.
An environmental isotope and hydrochemical study was carried out to conceptualize the surface water and groundwater interaction and to explore the groundwater flow pattern in relation to the geological setting. More emphasis is given to the Afar Depression where groundwater is a vital source of water supply. Conventional field hydrogeological study and river discharge records support the isotope and hydrochemical analysis. The region is tectonically active, comprising rift volcanic terrain bordered by highlands. The result revealed that recent meteoric water is the major source of recharge. Three distinct groundwater zones were identified associated with the highlands, transitional escarpment and the rift. Towards the rift, the ionic concentration and isotopic enrichment (δ2H and δ18degO) increases following the groundwater flow paths, which is strongly controlled by axial rift faults. The groundwater flow converges to the seismically active volcano–tectonic depressions with internal drainage and to the Awash River. Within the Afar Depression, at least four groundwater regimen are identified: (1) fresh and shallow groundwater associated with alluvial deposits ultimately recharged by isotopically depleted recent highland rainfall and the evaporated Awash River; (2) cold and relatively younger groundwater within localized fractured volcanics showing mixed origin in axial fault zones; (3) old groundwater with very high ionic concentration and low isotopic signature localized in deep volcanic aquifers; and (4) old and hot saline groundwaters connected to geothermal systems. The study demonstrated that dependable groundwater can only be obtained from the first two aquifer types in aerially restricted zones in flat plains following river courses, local wadis and volcano–tectonic depressions. The conventional hydrogeological survey and discharge records indicate substantial channel losses from the Awash River, which becomes a more dominant source of recharge in central and lower Awash valleys. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

7.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

8.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

9.
Variations in Cd, Cr, Cu, and Fe concentrations in water and the soft tissues of bivalved mollusks Anodonta anatina and Unio tumidus along the Southern Bug River channel are examined. Fe concentration was found to be somewhat higher than the MAC. Cd, Cr, and Cu concentrations in water met the drinking water standards. The comparison of individual reaches of the channel in terms of heavy metal concentrations in mollusks allowed polluted river reaches to be identified. The highest Fe concentrations in the soft tissues of mollusks were recorded near the river source. The mollusks in the middle and lower reaches of the Southern Bug featured high accumulation of Cd, Cr, and Cu.  相似文献   

10.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

11.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
以湖北保安湖为研究对象,分别于2021年4、7、10月和2022年1月采集表层水样,测定水体中微塑料丰度、粒径、形状、颜色和类型,探究浅水型湖泊表层水体中微塑料的时空分布特征及其影响因素。结果表明,保安湖表层水体微塑料的年平均丰度为(16.20±2.23)items/L。微塑料丰度呈现明显的季节性差异,其中夏季(采样时间7月)平均丰度最低,为(1.40±0.09)items/L。在所有微塑料颗粒中,粒径0.064~1 mm占比最大,为82.57%;黑色和无色微塑料占主导地位,占比分别为36.16%和21.31%;纤维状微塑料分布最广泛,占比达40.01%;聚乙烯(PE)和低密度聚乙烯(LDPE)是最主要的微塑料类型,两者之和占比达46.05%,其次为聚苯乙烯(PS,占比17.2%)、聚对苯二甲酸乙二醇酯(PET,占比8.33%)和聚乙酸乙酯(PVAC,占比8.31%)。统计分析表明,微塑料丰度与湖水水质无显著相关关系。该研究揭示了长江中下游地区典型浅水湖泊微塑料分布现状,为评估类似湖泊微塑料潜在污染风险提供了科学依据。  相似文献   

15.
The content and distribution of heavy metals in sediments of the intermittent and contaminated Asopos River, located in Central Greece, was assessed by means of total dissolution, dilute acid and sequential extraction procedures. Mineral magnetic properties were used as proxy parameters of transport mechanisms of land-derived material to the sea. The combination of enrichment factors estimated against local background levels and the levels of labile metals revealed that surface sediments are enriched in Cu, Cd, Ni and Cr. The low flow of the system allows particles and organic matter to accumulate in the estuarine shallow “pools” where they undertake a series of redox reactions, authigenic formation, etc. The most fine of these particles, which are metal rich, are transported to relatively long distances off the Asopos River mouth, even under low energy conditions, converting the system to a secondary source of pollution for the adjacent marine environment.  相似文献   

16.
土耳其东部是由碰撞引起的挤压变形区域,而西部为俯冲引起的爱琴海伸展变形区域,土耳其中部作为两者之间的过渡拥有很复杂的地质情况,尤其是具有火山活动和长远的俯冲、大陆碰撞等构造历史,因此获得此区域岩石圈可靠的速度结构对认识俯冲末期的板块状态、岩浆活动等现象意义重大。为了更好地了解此区域的岩石圈速度结构,本研究使用了(31°E—38.8°E,34.5°N—42.0°N)范围内172个台站的背景噪声数据,通过互相关方法获得经验格林函数;之后利用频率-贝塞尔变换法得到了5—80 s周期范围内的基阶瑞雷波频散曲线,并在个别区域获得了高阶模式频散曲线;最后利用基于Broyden-Fletcher-Goldfarb-Shanno算法校正的拟牛顿迭代反演方法得到地表至124 km深的三维剪切波速度结构。结果表明:土耳其中部的速度横向变化剧烈(最大变化可达400 m/s),且与地质边界和缝合带区域密切相关,中安纳托利亚火山区及部分金牛座山脉东部的速度在0—100 km深度均小于4.3 km/s,因此推测此区域不存在岩石圈地幔;从塞浦路斯海沟开始俯冲的非洲大洋岩石圈,以近垂直俯冲在金牛座山脉中部下方,表现为明显的高速特征;土耳其中部在70—100 km深度广泛存在与上升软流圈物质相关的低速带,因此大部分研究区域的岩石圈波速小于全球平均剪切波速度,并且此区域岩石圈整体较薄、厚度多变。此外,本研究还发现在金牛座山脉中部和东部约13—23 km深度存在一个明显的低速带,推测可能与地块破裂导致的地层部分熔融有关。  相似文献   

17.
Majority of shallow floodplain lake ecosystems of the middle and lower reaches of the Yangtze River (China) have gone through serious eutrophication problems over the recent past. The severe environmental deterioration accompanied by cyanobacterial blooms have become major water resource management challenges in the region. An advanced research method is urgently needed to tackle these challenges. The concept of ecological resilience address pressing questions of non-linear dynamics, threshold effects and regime shifts in shallow floodplain lakes, and help manage the ecosystem effectively. Palaeolimnological techniques are important for assessing long term resilience and associated thresholds effects of shallow lake ecosystems. However, the lack of reliable proxy methods available, the assessment of long term ecological resilience of shallow Yangtze River lake systems has become increasingly difficult. Cladocerans (water fleas) play a central role in lacustrine food webs by responding to external drivers and internal ecosystem processes in lakes. Their subfossils are well preserved and becoming one of potential proxy indicators of lake ecosystems change for a longer time scale. This study explores the potential application of subfossil cladocerans and their ephippia in assessing a long term ecological resilience and help better management strategies of lake ecosystems and water resources of the middle and lower reaches of the Yangtze River in China.  相似文献   

18.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
频率-贝塞尔变换方法(Frequency-Bessel Transform method,简称F-J方法)是一种分析微动信号的新方法,由于该方法采用频率矢量波数变换处理水平层状各向同性弹性模型中时空平稳随机分布的微动信号,所以从理论上可以提取出清晰的瑞利波基阶和高阶模态频散曲线,但是目前还没有相关的野外实验对此进行研究和应用.本文首先采用该方法对上海市苏州河地区采集的城市微动信号进行处理获得了频率-相速度谱,然后提取了多模态瑞利波频散曲线,最后通过粒子群算法对频散曲线进行联合反演,得到了浅地表0~70 m深度范围的S波速度结构,并且利用钻孔数据对反演的速度结构进行了验证.另外,本文还通过对比F-J方法和传统的SPAC(SPatial AutoCorrelation method)方法分别提取的频散曲线,展示了F-J方法在处理城市微动信号方面的优势.本文研究结果表明:(1)F-J方法可以从少量台站(21个台站)短时记录(1小时)的微动信号垂直分量中提取出清晰的基阶和高阶模态瑞利波频散曲线;(2)F-J方法提取的高阶模态频散曲线比传统SPAC方法提取的更加清晰,高频部分(>13 Hz)优势更为明显;(3)联合基阶和高阶模态频散曲线反演的浅地表速度结构更加精确,可以分辨出第四系沉积层中物性相差较小的速度界面和低速异常,在城市浅地表精细结构成像方面具有较好的应用前景.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号