首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (?R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ?R, ranging from 148 ± 46 14C yr on the Potomac River to ? 109 ± 38 14C yr at Swan Point, Maryland. The ?R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (? 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ?R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.  相似文献   

2.
We evaluated the concentration, size and distribution, and temporal variation of insoluble dust micro-particles in the snow, rainfall and water taken from the areas surrounding the Mt. Yulong to define the characteristics of modern atmospheric dust deposition and the contributions of different dust sources. The mean mass concentration (4511 μg kg−1) of micro-particles with 0.57 < d < 26 μm, and the diameter (11.5 μm) of dust contained in the water bodies of the Mt. Yulong are roughly similar to those observed in other sites, implying that dust is primarily supplied through short-range transport from proximal source regions (several or hundreds of km distances). The mean mass concentrations of micro-particles with 0.57 < d < 26 μm is lower in the rainfall than in the snow and the river water, suggesting the rain water is an ideal source/carrier for detecting the characteristics of modern atmospheric micro-particles. Volume size distributions of micro-particles in the snow and water showed single modal structures having volume median diameters from 3 to 26 μm. Number concentrations of micro-particles in the snow were higher than that in the rainfall, the river water contains the least amount of micro-particles. Vertical profiles of the snowpits show that there is a strong lateral correlation among the dust peaks, indicating a regional uniformity of dust deposition and suitability of snow analysis for dust deposition. In addition, the bare rock of snow-free terrain in the Mt. Yulong region and the mineral particles from local rock weathering are also important sources for the dust deposition.  相似文献   

3.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

4.
The Baogutu gold deposit, West Junggar (Xinjiang, NW China), is composed of quartz–sulfide veins and their stockworks and is hosted within an Early Carboniferous volcanic–sedimentary sequence. Three ore-forming paragenetic stages can be identified: coarse-grained quartz–sulfide vein (stage I), gold-bearing fine-grained quartz–sulfide vein (stage II), and native antimony-bearing calcite–sulfide veinlets (stage III). The estimated formation temperatures (approximately 360 to 220 °C), fS2 (? 7 to ? 15 log units), and fO2 (? 26 to ? 43 log units) decrease from stage I, through stage II, to stage III. The nature of the hydrothermal fluid changed from weakly acidic (pH: 5 to 6 at stage I) to alkaline (pH: > 7 at stage III).Two different occurrences of native antimony could be identified: one coexists with chalcopyrite and pyrrhotite, whereas the other occurs as isolate grains within calcite veins. Native antimony (up to 100 μm in size) contains minor amounts of As (2.0 to 2.7 wt.%); empirical formula Sb0.95–0.96As0.03–0.04. Decrease of temperature and fO2 at high pH and low fS2 conditions favored co-precipitation of native antimony–ullmannite assemblages and the decomposition of tetrahedrite. Native antimony crystallized later than the native gold, suggesting fractionation between Au and Sb during the hydrothermal evolution of the deposit.  相似文献   

5.
《Applied Geochemistry》2005,20(5):973-987
Due to liming of acid mine drainage, a calcite–gypsum sludge with high concentrations of Zn (24,400 ± 6900 μg g−1), Cu (2840 ± 680 μg g−1) and Cd (59 ± 20 μg g−1) has formed in a flooded tailings impoundment at the Kristineberg mine site. The potential metal release from the sludge during resuspension events and in a long-term perspective was investigated by performing a shake flask test and sequential extraction of the sludge. The sequentially extracted carbonate and oxide fractions together contained ⩾97% of the total amount of Cd, Co, Cu, Ni, Pb and Zn in the sludge. The association of these metals with carbonates and oxides appears to result from sorption and/or coprecipitation reactions at the surfaces of calcite and Fe, Al and Mn oxyhydroxides forming in the impoundment. If stream water is diverted into the flooded impoundment, dissolution of calcite, gypsum and presumably also Al oxyhydroxides can be expected during resuspension events. In the shake flask test (performed at a pH of 7–9), remobilisation of Zn, Cu, Cd and Co from the sludge resulted in dissolved concentrations of these metals that were significantly lower than those predicted to result from dissolution of the carbonate fraction of the sludge. This may suggest that cationic Zn, Cu, Cd and Co remobilised from dissolving calcite, gypsum and Al oxyhydroxides were readsorbed onto Fe oxyhydroxides remaining stable under oxic conditions. In a long-term perspective (≳102 a), ⩾97% of the Cd, Co, Cu, Ni, Pb and Zn content of the sludge potentially is available for release by dissolution of calcite and reductive dissolution of Fe oxyhydroxides if the sludge is subject to a soil environment with lower dissolved Ca concentrations, pH and redox than in the impoundment.  相似文献   

6.
We investigate the helium, carbon and oxygen–hydrogen isotopic systematics and CO2/3He ratios of 8 water and 6 gas samples collected from 12 geothermal fields in western Anatolia (Turkey). 3He/4He ratios of the samples (R) normalized to the atmospheric 3He/4He ratio (RA = 1.39 × 10? 6) range from 0.27 to 1.67 and are significantly higher than the crustal production value of 0.05. Fluids with relatively high R / RA values are generally found in areas of significant heat potential (K?z?ldere and Tuzla fields). CO2/3He ratios of the samples, ranging from 1.6 × 109 to 2.3 × 1014, display significant variation and are mostly higher than values typical of an upper mantle source (2 × 109). The δ13C (CO2) and δ13C (CH4) values of all fluids vary from ? 8.04 to + 0.35‰ and ? 25.80 to ? 23.92‰ (vs. PDB), respectively. Stable isotope values (δ18O–δD) of the geothermal waters are conformable with the Mediterranean Meteoric Water Line and indicate a meteoric origin. The temperatures calculated by gas geothermometry are significantly higher than estimates from chemical geothermometers, implying that either equilibrium has not been attained for the isotope exchange reaction or that isotopic equilibration was disturbed due to gas additions en route to the surface.Evaluation of He–CO2 abundances indicates that hydrothermal degassing and calcite precipitation (controlled probably by adiabatic cooling due to degassing) significantly fractionate the elemental ratio (CO2/3He) in geothermal waters. Such processes do not affect gas phase samples to anywhere near the same extent. For the gas samples, mixing between mantle and various crustal sources appears to be the main control on the observed He–C systematics: however, crustal inputs dominate the CO2 inventory. Considering that limestone is the main source of carbon (~ 70 to 97% of the total carbon inventory), the carbon flux from the crust is found to be at least 20 times that from the mantle. As to the He-inventory, the mantle-derived component is found to vary up to 21% of the total He content and is probably transferred to the crust by fluids degassed from deep mantle melts generated in association with the elevated geotherm and adiabatic melting accompanying current extension. The range of 3He/enthalpy ratios (0.000032 to 0.19 × 10? 12 cm3 STP/J) of fluids in western Anatolia is consistent with the release of both helium and heat from contemporary additions of mantle-derived magmas to the crust. The deep faults appear to have facilitated the deep circulation of the fluids and the transport of mantle volatiles and heat to the surface.  相似文献   

7.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

8.
Lumbricus terrestris earthworms exposed to 11 soils of contrasting properties produced, on average, 0.8 ± 0.1 mgCaCO3 earthworm?1 day?1 in the form of granules up to 2 mm in diameter. Production rate increased with soil pH (r2 = 0.68, p < 0.01). Earthworms could be a significant source of calcite in soils.  相似文献   

9.
Recently, 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) were separated from 5-methyl brGDGTs, which are used in brGDGT-based proxies. Here we analyzed brGDGTs in 27 soil samples along the 400 mm isoline of mean annual precipitation in China by using tandem 2D liquid chromatography. The fractional abundance of 6-methyl brGDGTs showed a positive correlation with soil pH, while that of 5-methyl brGDGTs decreased with increasing soil pH. The abundance ratio of 6-/5-methyl brGDGTs, namely the isomerization of branched tetraethers (IBT), was calculated. The correlation of IBT with pH (pH = 6.33  1.28 × IBT; R2 0.89; root mean squared error, RMSE, 0.24) was much stronger than that of the traditionally used cyclization index of branched tetraethers (CBT) with pH (R2 0.52; RMSE 0.49) and comparable with that of CBT′ with pH (R2 0.88; RMSE 0.25). Compiling all available data from 319 soil samples resulted in a global calibration: pH = 6.53  1.55 × IBT (R2 0.72; RMSE 0.65), which has a better correlation than the CBT5ME-pH proxy (R2 0.63; RMSE 0.78), but a weaker correlation than the CBT′-pH proxy (R2 0.85; RMSE 0.52). Our result suggests that the IBT is a promising indicator for soil pH, particularly in cases when some compounds in the CBT′ index cannot be determined.  相似文献   

10.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

11.
Chromophoric dissolved organic matter (CDOM) is an important component in the aquatic environment and plays a key role in light attenuation and in carbon biogeochemical cycles. We examined CDOM production in each of two laboratory experiments in which phytoplankton and macrophyte degradation were monitored using absorption and excitation–emission matrix fluorescence spectroscopy (EEMs). During the incubation period, CDOM was produced from phytoplankton and macrophytes, and partly decomposed by microorganisms. The absorption spectra of the phytoplankton derived and the macrophyte derived CDOM were distinct and characterized by peaks and shoulders in the UV bands. Production of CDOM absorption at 350 nm, a(350), was 0.0125 m2/g per unit of chlorophyll a from phytoplankton CDOM from 0–3 d. Meanwhile a(350) production was 2.708 × 10−4 m2/g per unit of wet biomass from macrophytes CDOM from 1–7 d. Despite the high production of CDOM by phytoplankton and macrophytes, extrapolation of these values to the field indicated that about 15% of total CDOM was produced from phytoplankton during algal blooms in Meiliang Bay in summer and about 8% of total CDOM was produced from macrophytes in the macrophyte dominated littorals. The mean value of the spectral slope (S) describing the exponential decrease of the absorption spectrum, which was strongly correlated to an optical index of molecular size, for the phytoplankton derived CDOM was 10.26 ± 2.05 μm−1, which was significantly lower than the mean S of 14.47 ± 2.88 μm−1 for the macrophyte derived CDOM (t-test, p < 0.001). The mean value of the spectral slope ratio (SR) for the phytoplankton derived CDOM was 1.79 ± 0.52, which was significantly higher than that of 0.35 ± 0.58 for the macrophyte derived CDOM (t-test, p < 0.001). Three fluorescent components were validated in parallel factor analysis (PARAFAC) models calculated separately for phytoplankton derived and macrophyte derived CDOM, each CDOM source resulting in distinct excitation and emission maxima for each component. The significant differences in CDOM absorption spectra, S, SR and PARAFAC fluorescence component characteristics, all showed that phytoplankton derived CDOM was compositionally distinct from macrophyte derived CDOM. Overall both sources were important to the CDOM pool in the shallow temperate lake.  相似文献   

12.
The magnetite deposits of the Turgai belt (Kachar, Sarbai and Sokolov), in the Valerianovskoe zone of the southern Urals, Kazakhstan, contain a combined resource of over 3 Gt of iron oxide ore. The deposits are hosted by carbonate sediments and volcaniclastic rocks of the Carboniferous Valerianovka Supergroup, and are spatially related to the gabbroic to granitoid composition intrusive rocks of the Sarbai–Sokolov intrusive series. The magnetite deposits are developed dominantly as metasomatic replacement of limestone, but also, to a lesser extent, of volcanic rocks. Pre-mineralisation metamorphism and alteration resulted in the formation of wollastonite and the silicification of limestone. Magnetite mineralisation is associated with the development of a high temperature skarn assemblage of diopside, grossular–andradite garnet, actinolite, epidote and apatite. Sub-economic copper-bearing sulphide mineralisation overprints the magnetite mineralisation and is associated with deposition of hydrothermal calcite and the formation of an extensive sodium alteration halo dominated by albite and scapolite. Chlorite formation accompanies this stage and further later stage hydrothermal overprints. The replacement has in places resulted in preservation of primary features of the limestone, including fossils and sedimentary structures in magnetite, skarn calc-silicates and sulphides.Analysis of Re–Os isotopes in molybdenite indicates formation of the sulphide mineral assemblage at 336.2 ± 1.3 Ma, whilst U–Pb analyses of titanite from the skarn alteration assemblage suggests skarn alteration at 326.6 ± 4.5 Ma with re-equilibration of isotope systematics down to ~ 270 Ma. Analyses of mineral assemblages, fluid inclusion microthermometry, O and S isotopes suggest initial mineralisation temperatures in excess of 600 °C from hypersaline brines (45–50 wt.% NaCl eq.), with subsequent cooling and dilution of fluids to around 150 °C and 20 wt.% NaCl eq. by the time of calcite deposition in late stage sulphide-bearing veins. δ18O in magnetite (− 1.5 to + 3.5‰) and skarn forming silicates (+ 5 to + 9‰), δ18O and δ13C in limestone and skarn calcite (δ18O + 5.4 to + 26.2‰; δ13C − 12.1 to + 0.9‰) and δ34S in sulphides (− 3.3 to + 6.6‰) and sulphates (+ 4.9 to + 12.9‰) are all consistent with the interaction of a magmatic-equilibrated fluid with limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic–hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the large Na-alteration halo. Despite the reported presence of evaporites in the area there is no evidence for evaporitic sulphur in the mineralising system.These skarns show similarities to some members of the iron oxide–apatite and iron oxide–copper gold deposit classes and the model presented here may have implications for their genesis. The similarity in age between the Turgai deposits and the deposits of the Magnitogorsk zone in the western Urals suggests that they may be linked to similar magmatism, developed during post-orogenic collapse and extension following the continent–continent collision, which has resulted in the assembly of Laurussian terranes with the Uralide orogen and the Kazakh collage of the Altaids or Central Asian Orogenic Belt. This model is preferred to the model of simultaneous formation of very similar deposits in arc settings at either side of an open tract of oceanic crust forming part of the Uralian ocean.  相似文献   

13.
This study presents isotope geochemical analyses conducted on water column samples and core sediments collected from the Swan Lake Basin. Water analyses include the dissolved methane (CH4) content and the ratio of carbon-13 to carbon-12 (δ13C) in dissolved inorganic carbon (DIC). The core sediments – sandy muds containing inorganic calcite, organic matter, and opal phases ± ostracods – were examined by X-ray diffraction, dated by radiocarbon (14C), analyzed for wt% organic carbon, wt% organic nitrogen, wt% organic matter, wt% calcite, δ13C of bulk-sediment insoluble organic matter (kerogen), 18O:16O ratio (δ18O) and δ13C of bulk and ostracod calcite. Of particular significance is the large enrichment in carbon-13 (δ13C = +4.5 to +20.4‰ V-PDB) in the calcite of these sediments. The 13C-enriched calcite is primarily formed from DIC in the water column of the lake as a result of the following combined processes: (i) the incorporation of 13C enriched residual carbon dioxide (CO2) after partial reduction to CH4 in the sediments and its migration into the water column-DIC pool; (ii) the preferential assimilation of 12C by phytoplankton during photosynthesis; (iii) the removal of 13C-depleted CH4 by ebullition and of organic matter by sedimentation and burial. The 13C enrichment was low between 3624 and 2470 yr BP; high between 2470 and 1299 yr BP; and moderate since 1299 yr BP. Low 13C enrichment was formed under low water-column carbon levels while higher ones were formed under elevated rates of biomass and calcite deposition. These associations seem to imply that biological productivity is the main reason for carbon-13 enrichments.  相似文献   

14.
High-frequency spectral decay factor, kappa (k), in the accelerograms of the Wenchuan mainshock was measured using strong motion data from 52 stations within 311 km of the epicenter. The derived k range from 0.0034 s to 0.0468 s. The correlation of k versus fault distance was given, which is k = 0.01288 + 5.9068 × 10–5 R for the N-S component, k = 0.01881 + 1.4219 × 10–5 R for the E-W component, and k = 0.00855 + 5.6086 × 10–5 R for the U-D component. The analysis on the spatial variation of k demonstrates that k relates to source effect and propagation effect besides local site effect. Ground motions for the 52 stations were simulated using derived k and compared to actual recordings in terms of waveforms, amplitude spectra and response spectra. The results show agreement at shorter periods (<1 s), but a slight overestimation at longer periods (1–7 s).  相似文献   

15.
The Huangshaping polymetallic deposit is located in southeastern Hunan Province, China. It is a world-class W–Mo–Pb–Zn–Cu skarn deposit in the Nanling Range Metallogenic Belt, with estimated reserves of 74.31 Mt of W–Mo ore at 0.28% WO3 and 0.07% Mo, 22.43 Mt of Pb–Zn ore at 3.6% Pb and 8.00% Zn, and 20.35 Mt of Cu ore at 1.12% Cu. The ore district is predominantly underlained by carbonate formations of the Lower Carboniferous period, with stocks of quartz porphyry, granite porphyry, and granophyre. Skarns occurred in contact zones between stocks and their carbonate wall rocks, which are spatially associated with the above-mentioned three types of ores (i.e., W–Mo, Pb–Zn, and Cu ores).Three types of fluid inclusions have been identified in the ores of the Huangshaping deposit: aqueous liquid–vapor inclusions (Type I), daughter-mineral-bearing aqueous inclusions (Type II), and H2O–CO2 inclusions (Type III). Systematic microthermometrical, laser Raman spectroscopic, and salinity analyses indicate that high-temperature and high-salinity immiscible magmatic fluid is responsible for the W–Mo mineralization, whereas low-temperature and low-salinity magmatic-meteoric mixed fluid is responsible for the subsequent Pb–Zn mineralization. Another magmatic fluid derived from deep-rooted magma is responsible for Cu mineralization.Chondrite-normalized rare earth element patterns and trace element features of calcites from W–Mo, Pb–Zn, and Cu ores are different from one another. Calcite from Cu ores is rich in heavy rare earth elements (187.4–190.5 ppm), Na (0.17%–0.19%), Bi (1.96–64.60 ppm), Y (113–135 ppm), and As (9.1–29.7 ppm), whereas calcite from W–Mo and Pb–Zn ores is rich in Mn (> 10.000 ppm) and Sr (178–248 ppm) with higher Sr/Y ratios (53.94–72.94). δ18O values also differ between W–Mo/Pb–Zn ores (δ18O = 8.10‰–8.41‰) and Cu ores (δ18O = 4.34‰–4.96‰), indicating that two sources of fluids were, respectively, involved in the W–Mo, Pb–Zn, and Cu mineralization.Sulfur isotopes from sulfides also reveal that the large variation (4‰–19‰) within the Huangshaping deposit is likely due to a magmatic sulfur source with a contribution of reduced sulfate sulfur host in the Carboniferous limestone/dolomite and more magmatic sulfur involved in the Cu mineralization than that in W–Mo and Pb–Zn mineralization. The lead isotopic data for sulfide (galena: 206Pb/204Pb = 18.48–19.19, 207/204Pb = 15.45–15.91, 208/204Pb = 38.95–39.78; sphalerite: 206Pb/204Pb = 18.54–19.03, 207/204Pb = 15.60–16.28, 208/204Pb = 38.62–40.27; molybdenite: 206Pb/204Pb = 18.45–19.21, 207/204Pb = 15.53–15.95, 208/204Pb = 38.77–39.58 chalcopyrite: 206Pb/204Pb = 18.67–19.38, 207/204Pb = 15.76–19.90, and 208/204Pb = 39.13–39.56) and oxide (scheelite: 206Pb/204Pb = 18.57–19.46, 207/204Pb = 15.71–15.77, 208/204Pb = 38.95–39.13) are different from those of the wall rock limestone (206Pb/204Pb = 18.34–18.60, 207/204Pb = 15.49–15.69, 208/204Pb = 38.57–38.88) and porphyries (206Pb/204Pb = 17.88–18.66, 207/204Pb = 15.59–15.69, 208/204Pb = 38.22–38.83), suggesting Pb206-, U238-, and Th 232-rich material are involved in the mineralization. The Sm–Nd isotopes of scheelite (εNd(t) =  6.1 to − 2.9), garnet (εNd(t) =  6.8 to − 6.1), and calcite (εNd(t) =  6.3) from W–Mo ores as well as calcite (εNd(t) =  5.4 to − 5.3) and scheelite (εNd(t) =  2.9) from the Cu ores demonstrate suggest more mantle-derived materials involved in the Cu mineralization.In the present study we conclude that two sources of ore-forming fluids were involved in production of the Huangshaping W–Mo–Pb–Zn–Cu deposit. One is associated with the granite porphyry magmas responsible for the W–Mo and then Pb–Zn mineralization during which its fluid evolved from magmatic immiscible to a magmatic–meteoritic mixing, and the other is derived from deep-rooted magma, which is related to Cu-related mineralization.  相似文献   

16.
The Phu Lon skarn Cu–Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals.Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6–468.5 °C; 17.4–23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9–399.8 °C; 0.5–8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (?2.6 to ?1.1 δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu–Au skarn based on the mineralogy and fluid inclusion characteristics.  相似文献   

17.
The components and concentrations of metals in street dust are indictors of environmental pollution. To explore the pollution levels of Cd, Cr, Cu, Mn, Ni and Pb in street dust and their spatial distribution characteristics, 220 dust samples were collected in a grid pattern from urban street surfaces in Beijing. Multivariate statistics and spatial analyses were adopted to investigate the associations between metals and to identify their pollution patterns. In comparison with the soil background values, elevated metal concentrations were found, except those for Mn and Ni. The results of the geo-accumulation index (Igeo) and the potential ecological risk index (Eri) of the metals revealed the following orders: Cd > Cu > Cr > Pb > Ni > Mn and Cd > Cu > Pb > Cr > Ni. Levels of Igeo ranging from 0 to 5 were found and about 80% of the samples were below the moderately polluted level. The Eri values of single elements were within the low ecological risk level in most sampling sites. Most of the metals in the street dust of Beijing were statistically significantly correlated. It is hard to clearly identify the sources of each metal in the street dust since local environments are very complex. Cadmium, Cu, Cr, Mn and Pb showed medium spatial autocorrelations within the sampling region. Similar spatial distribution patterns were observed for Cu, Cr and Pb, and these metals had relatively high spatial variabilities and were enriched in the center of the city with several peaks scattered in the suburbs. Metal pollution anomalies were identified by using cluster and outlier analyses. Locations identified as clusters with high values indicated non-point source pollution, while locations identified as outliers with high values indicated point source pollution. Traffic, construction, and other human activities influenced these high values. In addition, the locations identified as outliers with low values in urban areas might benefit from less transportation and better management.  相似文献   

18.
《Precambrian Research》2006,144(1-2):1-18
Middle Neoproterozoic carbonates are found in the western part of Shandong Pennisula (i.e., the Jiaobei terrane) that is located in the northwestern part of the Sulu orogen in east-central China. For the first time, a successful SHRIMP U–Pb dating, coupled with CL imaging, was conducted on two samples of impure marble from the Fenzishan Group in this tectonic unit. The results yield consistent ages of 786 ± 67 and 240 ± 44 Ma for igneous and metamorphic zircons, respectively. Positive δ13C values as high as +5.6‰ are measured for both pure and impure marbles, consistent not only with the worldwide Neoproterozoic limestones in connection with the Sturtian ice-age, but also with the marbles associated with UHP metamorphic eclogites in the Dabie orogen. O isotope fractionation between calcite and garnet from one sample gave a temperature of 680 °C, pointing to upper amphibolite-facies metamorphic conditions. These results indicate that protolith of the marbles is a kind of limestone that was synchronously deposited with volcaniclastic rocks in the mid-Neoproterozoic rift basin of continental margin. Like the UHP metamorphic rocks in the Dabie-Sulu orogenic belt, both mid-Neoproterozoic magmatism and Triassic metamorphism are recorded in the impure marbles. Therefore, protolith of the impure marbles corresponds to the sedimentary limestone of rift basin developed during the mid-Neoproterozoic breakup of supercontinent Rodinia, but it was the sedimentary cover along the northern margin of the South China Block prior to its Triassic subduction. The occurrence of the mid-Neoproterozoic limestone with the Triassic metamorphism in the southern margin of the North China Block thus indicates tectonic overthrust by a crustal detachment between the sedimentary cover and the Precambrian basement during the continent subduction. As a result, the marbles in affinity to the South China Block were northward thrusted over the basement of the North China Block.  相似文献   

19.
The variation of major and rare earth elements and yttrium (REY) in the monomictic hardwater Lake Tiberias during the wet and dry seasons of the hydrological year was studied in two profiles. The average volume and Cl concentration of the known and unknown saline inflows of 1.6 × 107 m3 and 1.2 × 109 mol are derived by closing both balances. This brine corresponds to a mixture of 83% of groundwater from Cretaceous aquifers and 17% of very saline deep brine. Taking cycling of calcite in the hypolimnion into account, the settling rate of authigenic calcite is estimated to be 3.3 mol m−2 a−1.In the stratified lake of the dry season dissolved inorganic carbon increases by 490 μM at the thermo-/chemocline due to microbial reduction of SO42−, NO3, chemical reduction of Fe(III) and MnO2 colloids, and cycling of calcite in the hypolimnion. REY distribution in the stratified water column is dominantly controlled by coprecipitation with calcite, hydrous ferric oxides and MnO2 in the epilimnion and cycling of these compounds in the hypolimnion. The positive Ce anomaly in the hypolimnetic water is produced by cycling of MnO2. The simulation of the increase of REY in the hypolimnion reveals that hydrous ferric and manganese oxides only play a negligible role except Ce. Only about 10% of REY from cycled matter enhance REY in solution. Most of the released REY are adsorbed by particular matter and thus settling on the floor of the lake.Different from Na, U, SO42− and SiO2, the other elements, in particular REY, increase in the mixed water column from the top to the lower third and mostly decrease thereafter toward the bottom in the mixed lake during the wet season. The behavior of REY is caused by some cycling of calcite and pH-dependent re-equilibration of REY bound to hydrous ferric and manganese oxides adsorbed by particular matter.  相似文献   

20.
Calcium carbonate scaling poses highly challenging tasks for its prediction and preventative action. Here an elemental, isotopic and modelling approach was used to decipher the evolution of alkaline tunnel drainage solutions and sinter formation mechanisms for 3 sites in Austria. Drainage solutions originate from local groundwater and form their characteristic chemical composition by interaction with shotcrete/concrete. This interaction is indicated by a positive correlation of dissolved K+ and pH (up to 12.3), and a decrease of aqueous Mg2+ by the formation of brucite (pH > 10.5). Variability in Ca2+ and DIC is strongly attributed to portlandite dissolution, calcite precipitation and CO2 exchange with the atmosphere, where the 13C/12C and 18O/16O signatures of calcite can be traced back to the source of carbonate. The internal PCO2 value is a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of the degree of calcite saturation with a threshold value of 10−6.15 atm at 25 °C (pH  11). Precipitation rates of calcite are highest at pH  10. Mixing of groundwater-like solutions with strong alkaline drainage solutions has to be considered as a crucial factor for evaluating apparent composition of drainage solutions and calcite precipitation capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号