首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2, with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble (i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular, this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate change prediction at the regional scale. Received: 12 January 1998 / Accepted: 7 July 1999  相似文献   

2.
This study surveys the most recent projections of future climate change provided by 20 Atmospheric-Ocean General Circulation Models (AOGCMs) participating in the Coupled Model Intercomparison Project 3 (CMIP3) with focus on the Italian region and in particular on the Italian Greater Alpine Region (GAR). We analyze historical and future simulations of monthly-mean surface air temperature (T) and total precipitation (P). We first compare simulated T and P from the AOGCMs with observations over Italy for the period 1951–2000, using bias indices as a metric for estimating the performance of each model. Using these bias indices and different ensemble averaging methods, we construct ensemble mean projections of future climate change over these regions under three different IPCC emission scenarios (A2, A1B, and B1). We find that the emissions pathway chosen has a greater impact on future simulated climate than the criteria used to obtain the ensemble means. Across all averaging methods and emission scenarios, the models project annual mean increase in T of 2–4°C over the period 1990–2100, with more pronounced increases in summer and warming of similar magnitude at high and low elevations areas (according to a threshold of 400 m). The models project decreases in annual-mean P over this same time period both over the Italian and GAR regions. This decrease is more pronounced over Italy, since a small increase in precipitation over the GAR is projected in the winter season.  相似文献   

3.
This paper introduces an original method for climate change detection, called temporal optimal detection method. The method consists in searching for a smooth temporal pattern in the observations. This pattern can be either the response of the climate system to a specific forcing or to a combination of forcings. Many characteristics of this new method are different from those of the classical “optimal fingerprint” method. It allows to infer the spatial distribution of the detected signal, without providing any spatial guess pattern. The spatial properties of the internal climate variability doesn’t need to be estimated either. The estimation of such quantities being very challenging at regional scale, the proposed method is particularly well-suited for such scale. The efficiency of the method is illustrated by applying it on real homogenized datasets of temperatures and precipitation over France. A multimodel detection is performed in both cases, using an ensemble of atmosphere-ocean general circulation models for estimating the temporal patterns. Regarding temperatures, new results are highlighted, especially by showing that a change is detected even after removing the uniform part of the warming. The sensitivity of the method is discussed in this case, relatively to the computation of the temporal patterns and to the choice of the model. The method also allows to detect a climate change signal in precipitation. This change impacts the spatial distribution of the precipitation more than the mean over the domain. The ability of the method to provide an estimate of the spatial distribution of the change following the prescribed temporal patterns is also illustrated.  相似文献   

4.
利用TIGGE资料集下欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)、美国国家环境预报中心(NCEP)、中国气象局(CMA)和英国气象局(UKMO)5个模式预报的结果,对基于卡尔曼滤波的气温和降水的多模式集成预报进行研究。结果表明,卡尔曼滤波方法的预报效果优于消除偏差集合平均(BREM)和单模式的预报,但是对于地面气温和降水,其预报效果也存在一定的差异。在中国区域2 m气温的预报中,卡尔曼滤波的预报结果最优。而对于24 h累积降水预报,尽管卡尔曼滤波在所有量级下的TS评分均优于BREM,但随着预报时效增加,其在大雨及以上量级的TS评分跟最佳单模式UKMO预报相当,改进效果不明显。卡尔曼滤波在地面气温和24 h累积降水每个预报时效下的均方根误差均最优,预报效果更佳且稳定。  相似文献   

5.
多模式集成的概率天气预报和气候预测研究进展   总被引:2,自引:2,他引:2       下载免费PDF全文
基于大气的混沌特性,单一的确定性预报逐步向多值的不确定性概率预报转化已成为一种趋势。本文系统地评述了概率天气预报产生的背景,介绍了概率预报的相关概念及国内外的研究状况,着重讨论了多模式集成的概率预报的两种集成方法,即贝叶斯模式平均(Bayesian model averaging,BMA)和多元高斯集合核拟合法(Gaussian ensemble kernel dressing,GEKD),并给出了两个例子的概率预报试验结果。利用BMA方法制作的概率预报的方差较小,减小了预报的不确定性,因此预报结果更接近大气的真实值。作为另一种多模式集成方法,多元高斯集合核拟合法回报的地面气温距平均值及趋势的概率预测结果与实测结果基本一致。利用此方法建立了地面气温年代际变化的概率多模式集合预测模型,并从中提取年代际气候变化特征,对东亚季风区年代际预测具有重要应用价值。  相似文献   

6.
统计降尺度法对华北地区未来区域气温变化情景的预估   总被引:31,自引:1,他引:31  
迄今为止,大部分海气耦合气候模式(AOGCM)的空间分辨率还较低,很难对区域尺度的气候变化情景做合理的预测。降尺度法已广泛用于弥补AOGCM在这方面的不足。作者采用统计降尺度方法对1月和7月华北地区49个气象观测站的未来月平均温度变化情景进行预估。采用的统计降尺度方法是主分量分析与逐步回归分析相结合的多元线性回归模型。首先,采用1961~2000年的 NCEP再分析资料和49个台站的观测资料建立月平均温度的统计降尺度模型,然后把建立的统计降尺度模型应用于HadCM3 SRES A2 和 B2 两种排放情景, 从而生成各个台站1950~2099年1月份和7月份温度变化情景。结果表明:在当前气候条件下,无论1月还是7月,统计降尺度方法模拟的温度与观测的温度有很好的一致性,而且在大多数台站,统计降尺度模拟气温与观测值相比略微偏低。对于未来气候情景的预估方面,无论1月还是7月,也无论是HadCM3 SRES A2 还是B2排放情景驱动统计模型,结果表明大多数的站点都存在温度的明显上升趋势,同时7月的上升趋势与1月相比偏低。  相似文献   

7.
Several studies have been devoted to dynamic and statistical downscaling for both climate variability and climate change. This paper introduces an application of temporal neural networks for downscaling global climate model output and autocorrelation functions. This method is proposed for downscaling daily precipitation time series for a region in the Amazon Basin. The downscaling models were developed and validated using IPCC AR4 model output and observed daily precipitation. In this paper, five AOGCMs for the twentieth century (20C3M; 1970–1999) and three SRES scenarios (A2, A1B, and B1) were used. The performance in downscaling of the temporal neural network was compared to that of an autocorrelation statistical downscaling model with emphasis on its ability to reproduce the observed climate variability and tendency for the period 1970–1999. The model test results indicate that the neural network model significantly outperforms the statistical models for the downscaling of daily precipitation variability.  相似文献   

8.
Summary Illustrative examples are discussed of the interdecadal variability features of the regional climate change signal in 5 AOGCM transient simulations. It is shown that the regional precipitation change signal is characterized by large variability at decadal to multidecadal scales, with the structure of the variability varying markedly across regions. Conversely, the regional temperature change signal shows low interdecadal variability. Results are compared across scenarios, models and different realizations with the same model. Our analysis indicates that, at the decadal scale, linear scaling of the regional climate change signal by the global temperature change works relatively well for temperature but less so for precipitation. The nonlinear fraction of the climate change signal tends to decrease with the magnitude of the signal. The implications of interdecadal variability for the generation of regional climate change scenarios are discussed, in particular concerning the use of multi-experiment ensembles to produce such scenarios.  相似文献   

9.
IPCC AR4模式对东亚地区气候模拟能力的分析   总被引:30,自引:2,他引:30  
利用CRU地面温度、降水的陆地月平均观测资料,以及参与IPCC第四次评估报告的22个海气耦合模式的模拟结果,分析了这些模式对东亚地区当前气候的模拟能力。结果表明:虽然所有模式对东亚地区的气候都有一定的模拟能力,但各模式模拟效果差异较大;与单个模式相比,模式集合平均值能更好地反映气候变化趋势;多数模式的温度模拟值偏低,降水模拟值偏高;对1980-1999年20 a平均气候态空间分布、百年时间变化分析可以看出,温度模拟效果比较好,降水模拟较差。  相似文献   

10.
CMIP5全球气候模式对青藏高原地区气候模拟能力评估   总被引:5,自引:4,他引:5  
胡芩  姜大膀  范广洲 《大气科学》2014,38(5):924-938
青藏高原是气候变化的敏感和脆弱区,全球气候模式对于这一地区气候态的模拟能力如何尚不清楚。为此,本文使用国际耦合模式比较计划第五阶段(CMIP5)的历史模拟试验数据,评估了44 个全球气候模式对1986~2005 年青藏高原地区地表气温和降水两个基本气象要素的模拟能力。结果表明,CMIP5 模式低估了青藏高原地区年和季节平均地表气温,年均平均偏低2.3℃,秋季和冬季冷偏差相对更大;模式可较好地模拟年和季节平均地表气温分布型,但模拟的空间变率总体偏大;地形效应校正能够有效订正地表气温结果。CMIP5 模式对青藏高原地区降水模拟能力较差。尽管它们能够模拟出年均降水自西北向东南渐增的分布型,但模拟的年和季节降水量普遍偏大,年均降水平均偏多1.3 mm d-1,这主要是源于春季和夏季降水被高估。同时,模式模拟的年和季节降水空间变率也普遍大于观测值,尤其表现在春季和冬季。相比较而言,44 个模式集合平均性能总体上要优于大多数单个模式;等权重集合平均方案要优于中位数平均;对择优挑选的模式进行集合平均能够提高总体的模拟能力,其中对降水模拟的改进更为显著。  相似文献   

11.
基于TIGGE资料的地面气温和降水的多模式集成预报   总被引:9,自引:3,他引:6       下载免费PDF全文
利用TIGGE资料集下中国气象局(CMA)、欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)、美国国家环境预报中心(NCEP)和英国气象局(UKMO)5个中心集合预报结果,对多模式集成预报方法进行讨论。结果表明,多模式集成方法的预报效果优于单个中心的预报,但对于不同预报要素多模式集成方法的适用性存在差异。滑动训练期超级集合(R-SUP)对北半球地面气温的改进效果最优,但此方法对降水场的改进效果并不理想。在北半球中低纬24 h累积降水的回报试验中,消除偏差(BREM)的结果优于单个中心的预报,且此方法预报结果稳定。进一步利用滑动训练期消除偏差(R-BREM)集合平均对2008年1月中国南方极端雨雪冰冻过程进行多模式集成预报试验,结果表明,在固定误差范围内,R-BREM将中国南方大部分地区的地面气温预报时效由最优数值预报中心的96 h延长至192 h,且除个别时效外,小雨、中雨的TS评分得到明显提高。  相似文献   

12.
A novel data adaptive method named ensemble empirical mode decomposition (EEMD) was used to reconstruct past temperature and precipitation variability in two 2,328- and 1,837-year tree-ring chronologies from the Dulan region, northeastern Qinghai–Tibetan Plateau. Our results show that EEMD can be used to extract low-frequency signals from the Dulan tree-ring data. The extracted low-frequency temperature trends in the two chronologies correlate significantly with Northern Hemisphere temperatures over the past two millennia. In addition, the newly reconstructed precipitation data have a higher standard deviation than that of data reconstructed with the conventional ordinary least squares and variance matching methods and yield the best amplitude match to the instrumental data. This study shows that EEMD is a powerful tool for extracting the full spectrum of climate information in tree-ring chronologies.  相似文献   

13.
Uncertainty in climate change projections: the role of internal variability   总被引:5,自引:7,他引:5  
Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.  相似文献   

14.
This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature.  相似文献   

15.
During the summer monsoon (1 June to 30 September) 2007, real-time district level rainfall forecasts in short-range time scale were generated for Indian region applying multimodel ensemble technique. The pre-assigned grid point weights on the basis of correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.5° × 0.5° utilizing two seasons datasets (1 June to 30 September, 2005 and 2006), and the multimodel ensemble forecasts (day 1 and day 2 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district taking the average value of all grid points falling in a particular district. In this paper we examined the performance skill of the multimodel ensemble-based real-time district level short-range forecast of rainfall. It has clearly emerged from the results that the multimodel ensemble technique reported in this study is superior to each ensemble member. District wise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most districts of the country, particularly over the districts where the monsoon systems are dominant. Though the procedure shows appreciable skill to predict occurrence or non-occurrence of rainfall at the district level, it always underestimates rainfall amount, particularly in heavy rainfall events. Possible reasons of this failure may be due to model bias and poor data assimilation procedure.  相似文献   

16.
Regional climate models (RCMs) have been increasingly used for climate change studies at the watershed scale. However, their performance is strongly dependent upon their driving conditions, internal parameterizations and domain configurations. Also, the spatial resolution of RCMs often exceeds the scales of small watersheds. This study developed a two-step downscaling method to generate climate change projections for small watersheds through combining a weighted multi-RCM ensemble and a stochastic weather generator. The ensemble was built on a set of five model performance metrics and generated regional patterns of climate change as monthly shift terms. The stochastic weather generator then incorporated these shift terms into observed climate normals and produced synthetic future weather series at the watershed scale. This method was applied to the Assiniboia area in southern Saskatchewan, Canada. The ensemble led to reduced biases in temperature and precipitation projections through properly emphasizing models with good performance. Projection of precipitation occurrence was particularly improved through introducing a weight-based probability threshold. The ensemble-derived climate change scenario was well reproduced as local daily weather series by the stochastic weather generator. The proposed combination of dynamical downscaling and statistical downscaling can improve the reliability and resolution of future climate projection for small prairie watersheds. It is also an efficient solution to produce alternative series of daily weather conditions that are important inputs for examining watershed responses to climate change and associated uncertainties.  相似文献   

17.
This paper presents the method to develop response surface diagrams (RSD) suitable to evaluate the impacts of climate change on potential crop production and crop area. The diagrams depict the response of different agricultural crops to average long-term changes in ambient temperature and precipitation on a country basis. They take into account the spatial and seasonal variability of climate, and differences in the climate response of important crops. RSDs for Germany and the Democratic Republic of Congo illustrate that countries and crop types differ greatly in their sensitivity to unit changes in long-term average climate. In comparing the area-weighted RSDs for Germany and Democratic Republic of Congo, it was found that the potential production in Germany of a weighted aggregation of crops is mainly sensitive to changes in temperature, whereas the potential crop production in the Democratic Republic of Congo mainly responds to changes in precipitation (over the specified ranges of climate variables). The RSDs can provide a visual overview of these varying sensitivities, and are a convenient and simple-to-understand method to summarize crop responses to climate change in a particular country.  相似文献   

18.
对CMIP5全球气候模式中年代际回报试验的气温资料及其简单集合平均(Multi-model ensemble mean,EMN)和贝叶斯模式平均的结果(Bayesian Model Averaging,BMA)进行经验正交函数(Empirical Orthogonal Function,EOF)分解和Morlet小波分析,检验评估各个模式及其EMN和BMA对东亚地面气温的方差、气温时空分布特征及周期变化的回报能力。结果表明,10个模式、EMN、BMA都能很好地回报出1981—2010年东亚地面气温的方差分布,其中BMA回报效果最好。EOF分析表明,BMA能较好地回报出东亚地面气温第一模态的时空分布。MIROC5能较好地回报出第二模态的趋势变化,但却不能回报出气温的年际变率。绝大多数模式和EMN、BMA虽然能回报出东亚地面气温的变化趋势,但是对气温年际变率的回报仍然是比较困难的。CMCC-CM对气温变化主模态的3~5 a的周期变化特征回报效果最好,和NCEP资料的结果最为接近。  相似文献   

19.
降水是中国西北干旱区水资源的重要组成部分,利用合理方法有效认识降水的区域变化规律对指导农业发展尤为重要。基于新疆16个国际交换站1961-2012年降水距平时间序列,利用集合经验模态分解(EEMD)方法,分析了新疆降水变化趋势的多尺度特征,并对其空间差异进行了初步探讨。近50多年来,新疆降水量整体上呈现出非线性的显著增多趋势,且其变化存在明显的年际尺度(3年和6年准周期)和年代际尺度(10年和31年准周期);各周期分量方差贡献率显示年际变化在新疆降水变化中占据主导地位,重构的降水年际变化趋势能精细刻画原始降水序列在研究时期内的波动状况;降水年代际变化揭示了新疆降水在1985年前后气候模态有了显著转换,由原来降水以负相位为主的气候模态转向正相位显著的气候模态;此外,降水变化趋势和转折时间均具有明显的区域差异。EEMD方法有助于加深人们对新疆降水多尺度变化特征的认识,是一种适用于非线性、非平稳信号分析的有效方法。  相似文献   

20.
In this study we examine the performance of eight of the IPCC AR4 global coupled climate models used in the WCRP CMIP3 Multimodel Dataset, as well as their ensemble mean, in simulating annual indices of extreme temperature and precipitation climate events in South America. In this first part we focus on comparing observed and modeled mean values and interannual variability. Two extreme temperature indices based on minimum temperature (warm nights and frost days) and three indices of extreme precipitation (R95t, R10 and consecutive dry days), obtained both from meteorological stations during 1961–2000 and model outputs, were compared. The number of warm nights are better represented by models than the FD. The interannual variability pattern is also in good agreement with the observed values. For precipitation, the index that is best represented by the models is the R95t, which relates the extreme precipitation to local climate. The maximum of dryness observed over the central Argentinian Andes or the extensive dry season of the Amazon region could not be represented by any model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号