首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose a classification of supermassive black holes (SMBHs) based on their efficiency in the conversion of infalling mass in emitted radiation. We use a theoretical model that assumes a conservation of angular momentum between the gas falling inside the hole and the photons emitted outwards, and suggests the existence of the scaling relation MReσ3, where M is the mass of the central SMBH, whereas Re and σ are the effective radius and velocity dispersion of the host galaxies (bulges), respectively. We apply our model on a data set of 57 galaxies of different morphological types and with M measurements, obtained through the analysis of Spitzer /IRAC 3.6‐µ m images. In order to find the best fit of the corresponding scaling law, we use the FITEXY routine to perform a least‐squares regression of M on Reσ3 for the considered sample of galaxies. Our analysis shows that the relation is tight and our theoretical model allows to easily estimate the efficiency of mass conversion into radiation of the central SMBHs. Finally we propose a new appealing way to classify the SMBHs in terms of this parameter. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We report three new or updated techniques for probing the parameters of active galaxies based on the masses of their central black holes MBH). First, we derived a near-IR analog of the bulge luminosity versus MBH relationship. The low scatter makes it a promising new tool to study the black hole demographics. Next, we present relations between MBH and the10 μm and 2-10 keV nuclear luminosity. They may help to study the MBH evolution over wide redshift ranges. Finally, we measured MBH in quasars from z ∼ 3.4 to z ∼ 0.3 to search directly for MBH growth. Surprisingly, we found no evidence for growth implying that the majority of quasar host galaxies have undergone their last major merger at z ≥ 3. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The dynamical masses of dwarf-spheroidals, spiral and elliptical galaxies, dwarf irregular binaries, groups of galaxies and clusters are shown to lie in a band about the M ∼ ρR3 line. The value of ρ is approximately the same as that estimated for unseen matter in the solar neighbourhood. The clusters themselves lie about theM ∼ R -3 line derived for a self-gravitating neutrino gas; their masses are distributed around the maximum Jeans-mass, MJmax. corresponding to mv - 10 eV in an expanding universe. The present day length scales of clusters and the dispersion in the velocities observed within them are understood in terms of a 100-fold expansion subsequent to the initial growth of the fluctuations at MJmax. These systematics on theR-M plane imply that the initial condensations in the expanding universe are on the scale of the rich clusters of galaxies, these condensations were triggered dominantly by the gravitation of the neutrinos and the constant density of al systems arises naturally due to the embedding of these systems in the large scale neutrino condensations. If the neutrino density falls off asr -2 beyond the cluster edge till the distributions from different clusters overlap, then the mean density of the neutrinos approximately equals the closure density of the universe.  相似文献   

4.
Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ~ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).  相似文献   

5.
We present kinematics and stellar population properties of 17 dwarf early-type galaxies in the luminosity range -14 ≥ M B ≥ -19. Our sample fills the gap between the intensively studied giant elliptical and Local Group dwarf spheroidal galaxies. The dwarf ellipticals of the present sample have constant velocity dispersion profiles within their effective radii and do not show significant rotation, hence are clearly anisotropic. The dwarf lenticulars, instead, rotate faster and are, at least partially, supported by rotation. From optical Lick absorption indices, we derive metallicities and element abundances. Combining our sample with literature data of the Local Group dwarf spheroidals and giant ellipticals, we find a surprisingly tight linear correlation between metallicity and luminosity over a wide range: -8 ≥ M B ≥ -22. The α/Fe ratios of our dwarf ellipticals are significantly lower than the ones of giant elliptical galaxies, which is in agreement with spectroscopy of individual stars in Local Group dwarf spheroidals. Our results suggest the existence of a clear kinematic and stellar population dichotomy between dwarf and giant elliptical galaxies. This result is important for theories of galaxy formation, because it implies that present-day dwarf ellipticals are not the fossiled building blocks of giant ellipticals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We impose the requirement that the spatial distribution of pulsars deduced from their dispersion measures using a model of the galactic electron density (n e ) should be consistent with cylindrical symmetry around the galactic centre (assumed to be 10 kpc from the Sun). Using a carefully selected subsample of the pulsars detected by the II Molonglo Survey (II MS), we test a number of simple models and conclude that (i) the effective mean 〈ne〉) for the whole galaxy is 0.037-0.012 +0.020 cm-3, (ii) the scale height of electrons is greater than 300 pc and probably about 1 kpc or more, and (iii) there is little evidence for variation of ne with galactic radius RGC for RGc ≳ 5 kpc. Further, we make a detailed analysis of the contribution to ne from H II regions. Combining the results of a number of relatively independent calculations, we propose a model for the galactic electron density of the formn e (z) = 0.030 + 0.020 exp (- |z|/70) cm-3 where z(pc) is the height above the galactic plane and the second term describes the contribution from H II regions. We believe the statistical uncertainties in the parameters of this model are quite small.  相似文献   

7.
The possible cosmological variation of the proton-to-electron mass ratio μ = m p /m e was estimated by measuring the H2 wavelengths in the high-resolution spectrum of the quasar Q 0347-382. Our analysis yielded an estimate for the possible deviation ofμ value in the past, 10 Gyr ago: for the unweighted valueΔ μ / μ = (3.0±2.4)×10-5; for the weightedvalueΔ μ / μ = (5.02±1.82)×10-5.Since the significance of the both results does not exceed3σ, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of μ (95% C.L.):|Δ μ / μ| < 8× 10-5 .This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant α and the elementary particle masses (mp, me, etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In several nearby LL* early‐type galaxies, recent observations at large radii have shown indications of a lack of dark matter, substantially at odds with the prediction from the Cold Dark Matter (CDM) hierarchical merger models. Here we discuss a pilot observational project for the study of the internal kinematical and dynamical properties of this remarkable sample of galaxies. Using the VIMOS‐IFU in its high spectral resolution mode, it would be possible to investigate the regions up to ∼1.2 Re, taking advantage of the much larger field of view and telescope diameter. This will allow to disclose the presence of any kinematical substructures which could affect the conclusion on the mass modeling and definitely clarify the inner structure of this particular class of early‐type galaxies. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

10.
We explore the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23. For this purpose, we have obtained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. As our investigation spans both a broad range in luminosity (–22.3≤MB≤–:19.3)and a wide field of view (10′×10′), the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster center. In this paper, we present first results on the Faber-Jackson relation and, for a subsample of 14 galaxies with morphological and structural parameters from HST, we also investigate the evolution of the Kormendy relation and the Fundamental Plane. We find a mild luminosity evolution of the early-type galaxies in Abell 2390: our objects are on average brighter by m B∼0.4 mag. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present R-band galaxy luminosity functions (GLFs) from aspectroscopic sample of six nearby rich galaxy clusters. In addition to individual cluster GLFs, extending to, in one case, M R=–14, we also present composite GLFs for cluster and field galaxies toM R=–17. All six cluster samples are consistent with the composite GLF, but there is evidence that the GLF of the quiescent population in clusters is not universal. Furthermore, the GLF of quiescent galaxies is significantly steeper in clusters than in the field. The overall GLF in clusters is consistent with that of field galaxies, except for the luminous tip, which is enhanced in clusters versus the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
This article discusses the interstellar extinction curve in the visible and the value of the ratio of absolute to selective extinction RV = AV/E (BV). It is concluded that the visible extinction curve is likely to be linear in the visible and that indirect estimates of RV from tentative determinations of AV or from infrared and UV observations are questionable. There is currently no evidence of any variation of RV with direction. If RV is close to 3, as it has been inferred from mid‐infrared data, starlight in the visible is extinguished by a factor F /F0 = (2.5 e–2μm/λ)E (BV). But if the visible wavelength range alone is considered, 4 appears as its most natural and probable value and F /F0 = e–2E (BV)/λ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The formulation of the tensor virial equations is generalized to unrelaxed configurations, where virial equilibrium does not coincide with dynamical (or hydrostatic) equilibrium. Homeoidally striated, Jacobi ellipsoids, which generalize classical Jacobi ellipsoids, are studied in detail. Further investigation is devoted to the generation of sequences of virial equilibrium configurations where the anisotropy parameters are left unchanged, including both flattened and elongated, triaxial configurations, and the determination of the related bifurcation points. An application is made to dark matter haloes hosting giant galaxies (M ≈ 1012 m), with regard to assigned initial and final configuration, following and generalizing to many respects a procedure conceived by Thuan & Gott (1975). The dependence of the limiting axis ratios, below which no configuration is allowed for the sequence under consideration, on the change in mass, total energy, and angular momentum, during the evolution, is illustrated in some representative situations. The dependence of the axis ratios, ε31 and ε21, on a parameter, related to the initial conditions of the density perturbation, is analysed in connection with a few special cases. The same is done for the rotation parameters. Within the range of the rotation parameter, λ, deduced from high‐resolution numerical simulations, the shape of dark matter haloes is mainly decided by the amount of anisotropy in residual velocity distribution. On the other hand, the contribution of rotation has only a minor effect on the meridional plane, and no effect on the equatorial plane, as bifurcation points occur for larger values of λ. To this respect, dark matter haloes are found to resemble giant elliptical galaxies. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A gravity theory is considered with the Einstein-Hilbert Lagrangean R+aR 2+bR μν R μν , R μν being Ricci’s tensor and R the curvature scalar. The parameters a and b are taken of order 1 km2. Arguments are given which suggest that the effective theory so obtained might be a fair approximation of a viable theory. A numerical integration is performed of the field equations for a free neutron gas. The result is that the star mass increases with increasing central density until about 1 solar mass and then decreases. The baryon number increases monotonically, which suggests that the theory allows stars in equilibrium with arbitrary baryon number, no matter how large.  相似文献   

16.
In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5R e.  相似文献   

17.
Spiral galaxies with a reported bend in the slope of the oxygen abundance O/HR 23, derived with the traditionally used R23-method, are examined. It is shown that the artificial origin of the reported bends can be naturally explained. Two causes of the false bend in the slope of O/HR 23 are indicated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The vertical stability character of the families of short and long period solutions around the triangular equilibrium points of the restricted three-body problem is examined. For three values of the mass parameter less than equal to the critical value of Routh (μ R ) i.e. for μ = 0.000953875 (Sun-Jupiter), μ = 0.01215 (Earth-Moon) and μ = μ R = 0.038521, it is found that all such solutions are vertically stable. For μ > (μ R ) vertical stability is studied for a number of ‘limiting’ orbits extended to μ = 0.45. The last limiting orbit computed by Deprit for μ = 0.044 is continued to a family of periodic orbits into which the well known families of long and short period solutions merge. The stability characteristics of this family are also studied.  相似文献   

19.
Surface photometry of 18 Virgo cluster dwarf elliptical (dE) and dwarf lenticular (dS0) galaxies, made by Gavazzi et al. in the H band (1.65 μm) and in the B band (0.44 μm), shows that the ratio of the effective radii of these stellar systems in the B and H bands,   r e B / r e H   , ranges between 0.7 and 2.2. In particular, dwarf ellipticals and lenticulars with a red total colour index   B - H   (i.e. with  3.2< B - H <4)  have equal effective radii in these two passbands. By contrast, blue (i.e. with  2.5< B - H <3.1)  dEs and dS0s have B -band effective radii about 50 per cent larger than the H -band ones, on average. Consistently, strong negative gradients in   B - H   along the galactocentric radius are found to be associated with blue total colours. This trend is not found in a sample of 29 giant E and S0 galaxies of the Coma cluster with analogous data available in the literature. These early-type giants span a broad range in    r e B / r e H    (0.2–2.2)  , with a mean   r e B / r e H ∼1.1  , but a narrow range in (red) colour  (3.3< B - H <4.2)  . In these stellar systems, colour gradients are usually interpreted as arising either from age/metallicity gradients along the radial coordinate or from dust attenuation, whatever the total colour of the system is. Assuming each of these three distinct interpretations of the origin of colour gradients, we discuss the origin of the association of strong negative colour gradients with blue colours found in the early-type dwarfs under study, in relation with current scenarios of formation and evolution of dE and dS0 galaxies.  相似文献   

20.
The study of X-ray clusters of galaxies, started 30 years ago, has revealed an increasing complexity in the thermodynamics of the X-ray emitting intracluster medium (ICM) as long as the sensitivity and the resolution of the X-ray satellites increased. At the same time, deep surveysdetected several, unexpected, high-z clusters. Here we focus on the Chandra observations of the most distant X-ray selected clusters (0.3 < z < 1.3), in order to constrain their thermodynamic evolution. The X-ray scaling properties show hints of negative evolution in the luminosity–temperature and M gas–temperature relations, and a positive evolution in the entropy–temperature relation. We find that the mean iron abundance at 〈z〉 = 0.8 is Z Fe = 0.25+0.04 −0.06 Z , and at 〈z〉 ∼ 1.2 is Z Fe = 0.35+0.06 −0.05 Z , both measures consistent with no evolution with respect to the local value Z Fe≃ 0.3 Z . These results can provide interesting constraints on the thermodynamics of the ICM at large look back times, pointing towards a redshift z ≳ 2 for the onset of non-gravitational processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号