共查询到20条相似文献,搜索用时 0 毫秒
1.
B. Sizirici I. Yildiz 《International Journal of Environmental Science and Technology》2017,14(5):1027-1036
Landfill leachate is a high-strength wastewater. If it is not managed properly, it can pollute surrounding environment. The aim of this study is to determine the simultaneous adsorption capacity of iron oxide-coated gravel for metals such as Cd(II), Cu(II), Fe(II), Ni(II) and Zn(II) in high-strength leachate sample. Different operating conditions such as pH, time, and dosages were investigated to determine the kinetics and mechanism of adsorption process. Coating with iron oxide changed the external surface of gravel. The adsorption capacities increased with increased pH, and the optimum pH was found to be 7. High removal rates were observed in a short period of time. The Freundlich model fitted reasonably well to the experimental data, indicating multilayer adsorption process and the heterogeneity of the surface (R 2 ranging 0.57–0.94). The Temkin model fitted well to the experimental data as well (R 2 ranging 0.67–0.98), indicating that the adsorption is an exothermic process. The adsorption of ions was found to obey second-order kinetics, indicating one-step, surface-only adsorption process. The degree of metal adsorption on iron oxide-coated gravel at pH 7 was in the order Cu(II) > Cd(II) > Fe(II) > Zn(II) > Ni(II). 相似文献
2.
《International Geology Review》2012,54(5):495-504
3.
《Applied Geochemistry》2003,18(10):1573-1582
The effects of the ionic strength (maintained by LiCl, NaCl or KCl) and Ca2+ and Mg2+ concentration on the coagulation of purified humic acids (HA) was studied. Solutions of known ionic strengths, pcH, Ca2+ and Mg2+ concentrations were prepared with HA and filtered to obtain the fraction with a size smaller than 100 kD. After a 50 day storage, samples of these solutions were filtered again (100 kD) and the total organic C (TOC) of the filtered solutions measured. The HA coagulation increased with salt concentration, with the cationic charge, and for cations of the same charge, with the cationic charge density. The coagulation decreased for pcH values of 4 to 7–8 in the absence of and presence of Mg2+ and Ca2+. In the absence of the divalent cations, the coagulation has a constant value for pcH>8, but, in the presence of Mg2+ and Ca2+, increases at pcH values greater than 9. The coagulation of humic materials occurs whether the samples are exposed to light or kept in the dark, although the coagulation kinetics are slower for the samples kept in the dark. The size distribution of size-fractionated humic solutions changes over time to a size distribution similar to that of the original humic solution before it was size-fractionated. The results are explained by the DLVO theory. 相似文献
4.
A. L. Perchuk M. Burchard H.-P. Schertl W. V. Maresch T. V. Gerya H.-J. Bernhardt O. Vidal 《Contributions to Mineralogy and Petrology》2009,157(5):573-592
We demonstrate the possibility of studying several diffusion couples in a single run, i.e. under almost similar P–T–t– conditions, allowing direct comparison of the diffusion rates in different diffusion couples. Thus the duration of experimental study and the risk of failure of expensive experimental equipment can be decreased considerably. The diffusion experiments were carried out in piston-cylinder apparatus. Gem-quality garnets of almandine, spessartine and grossular compositions together with inclusion-rich eclogitic garnets were embedded in a powder of natural pyrope and annealed together under dry conditions at P = 1.9–3.2 GPa and T = 1,070–1,400°C. Diffusion profiles were measured by electron microprobe and fitted numerically on the basis of multicomponent diffusion theory. The datasets derived from different diffusion couples yields parameters of the Arrhenius equation for Ca, Mg and Fe in natural eclogitic garnets and Mg, Mn and Fe in gem-quality garnets. We have also studied the effect of grain-boundary diffusion in the sintered pyrope matrix on interdiffusion on the basis of 2D modeling. Under conditions analogous to those of our experimental runs, we show that observed irregularities in some measured diffusion profiles (not applied for the diffusion modeling) can be directly related to the superposition of local grain-boundary diffusion on dominant volume diffusion. 相似文献
5.
The incorporation of hydrogen into ferrosilite, Fe-bearing enstatite and orthopyroxene containing different trivalent cations (Cr3+ and Al3+, Cr3+ and Fe3+) was investigated experimentally at 25 kbar. Hydrogen concentration was determined by FTIR-spectroscopy on oriented crystal sections and by secondary ion mass spectroscopy, whereas Mößbauer spectroscopy and optical spectroscopy were used to characterise the valence state of Fe in orthopyroxene. Results suggest that hydrogen incorporation in ferrosilite is achieved by a similar mechanism as in pure enstatite. In Cr-bearing samples, however, hydrogen incorporation is reduced by the presence of other trivalent cations by an increased tendency to form Tschermaks substitutions, e.g. Si T 4+ + Mg M1 2+ ? Al T 3+ + Cr M1 3+ . Thus, hydrogen solubility in natural orthopyroxenes from the Earth’s mantle, containing significant amounts of Cr3+, Al3+, and Fe3+, may be much more limited than expected from their trivalent cation content, as a large fraction of the trivalent cations does not participate in H-incorporating reactions as 2 Mg M1 2+ ? M M1 3+ + VM1 + H i + . 相似文献
6.
《Geochimica et cosmochimica acta》1999,63(19-20):3059-3067
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems.Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems. 相似文献
7.
The crystal structures of synthetic 7 angstrom and 10 angstrom manganates, synthetic birnessite and buserite, substituted by mono- and divalent cations were investigated by X-ray and electron diffractions. The monoclinic unit cell parameters of the subcell of lithium 7 angstrom manganate, which is one of the best ordered manganates, were obtained by computing the X-ray powder diffraction data: a = 5.152 angstroms, b = 2.845 angstroms, c = 7.196 angstroms, beta = 103.08 degrees. On the basis of the indices obtained by computing the X-ray diffraction data of Li 7 angstrom manganate, monovalent Na, K and Cs and divalent Be, Sr and Ba 7 angstrom manganates were interpreted as the same monoclinic structure with beta = 100-103 degrees as that of Li 7 angstrom manganate, from their X-ray diffraction data. In addition, divalent Mg, Ca and Ni 10 angstrom manganates were also interpreted as the same monoclinic crystal system with beta=90-94 degrees. The unit cell parameters, especially a, c and beta change possibly with the type of substituent cation probably because of the different ionic radius, hydration energy and molar ratio of substituent cation to manganese. However, these diffraction data, except for those of Sr and Ba 7 angstrom and Ca and Ni 10 angstrom manganates, reveal only some parts of the host manganese structure with the edge-shared [MnO6] octahedral layer. On the other hand, one of the superlattice reflections observed in the electron diffractions was found in the X-ray diffraction lines for heavier divalent cations Sr and Ba 7 angstrom and Ca and Ni 10 angtrom manganates. The reflection presumably results from the substituent cation position in the interlayer which is associated with the vacancies in the edge-shared [MnO6] layer and indicates that the essential vacancies are linearly arranged parallel to the b-axis. Furthermore, the characteristic superlattice reflection patterns for several cations, Li, Mg, Ca, Sr, Ba and Ni, manganates were interpreted that the substituent cations are regularly distributed in the interlayer according to the exchange percentage of substituent cation to Na+. In contrast, the streaking in the a-direction observed strongly in the electron diffractions for heavier monovalent cations, K and Cs, manganates probably results from the disordering of their cations in the a-direction in the interlayer. 相似文献
8.
《Geochimica et cosmochimica acta》1986,50(7):1455-1463
The adsorption of aqueous Hg2+, Pb2+, Zn2+ and Cd2+ complexes on a variety of sulphide minerals has been studied as a function of the solution pH and also as a function of the nature of the ligands in solution. Sulphide minerals are excellent scavengers for these heavy metals. The adsorption is strongly pH dependent, i.e. there is a critical pH at which the adsorption increases dramatically. The pH dependence is related to the hydrolysis of the metal ions. Indirect evidence suggests that the hydrolyzed species are adsorbed directly on the sulphide groups, probably as a monolayer. The results also suggest the presence of MCIn2−n species physisorbed on the adsorbed monolayer. A positive identification of the adsorbed species was not possible using ESCA/XPS. 相似文献
9.
Klaus Kaiser 《Organic Geochemistry》1998,28(12):849-854
The purpose of the study was to evaluate the influence of polyvalent cations known to form complexes with natural organic substances on the operational fractionation of dissolved organic matter (DOM) using XAD-8 adsorber resin. Dissolved organic matter solutions from a forest floor were treated with increasing concentrations of polyvalent metal cations (Ca2+, Al3+, Fe3+) at different pH levels. Then the concentrations of total dissolved organic carbon (DOC) and the distribution between hydrophilic and hydrophobic DOC were determined. The concentrations of total DOC decreased slightly when the C/metal ratio was less than 10, especially for Al and Fe. Hydrophilic DOC increased and hydrophobic DOC decreased with increasing concentrations of metal cations. Effects increased in the order Ca<Al<Fe and were more pronounced at low DOC concentrations and high pH values. The reason for the reduction of the DOC concentrations seemed to be the formation of insoluble metal–DOM complexes, while soluble metal–DOM complexes may induce an alteration of the distribution between hydrophilic and hydrophobic DOC. Thus, the polyvalent cations and their concentration need to be considered when DOM fraction distributions, determined with XAD-8 resin, of different waters are compared, especially at low DOC contents and high pH. 相似文献
10.
The complex mineral assemblages of silica and Fe minerals play a significant role in the transport of compounds in soils and sediments. Five coated sands including Goethite, Lepidocrocite, Ferrihydrite, Hematite and Magnetite were synthesized by a heterogeneous suspension method and characterized by FTIR spectroscopy, XRD, BET surface area and chemical analyses. The synthesis results showed that the degree of coating (mg Fe/g sand) varied with the mineralogy of Fe coating phases, which may have different affinities towards the silica surface. Batch experiments were conducted with two compounds (2,5-dihydroxybenzoic acid and 1-hydroxy-2-naphthoic acid) to quantify the contributions to adsorption from different oxide coatings and compare adsorption characteristics of selected organic acids. Sorption of these compounds to coated sands was examined versus a wide range of conditions (time, pH, ionic strength and sorbate concentration). Because of the attachment of Fe oxide, the coated sand had higher specific surface area, involving a better adsorption efficiency of organic compounds. Mineral surface charge and pH proved to be important for the adsorption of these compounds. The batch results indicated that the degree of coating was the most significant factor enhancing the sorption of aromatic compounds on the surface of sand and the mineralogy of the Fe phase was of less importance. 相似文献
11.
D. Craig Cooper Andrew L. Neal Dale Brewe Flynn W. Picardal 《Geochimica et cosmochimica acta》2005,69(7):1739-1754
Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the FeIII source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB (Shewanella putrefaciens 200) and a divalent metal (ZnII) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of “microbial iron reducibility,” it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed ZnII increased both [ZnII-aq] and the proportion of adsorbed ZnII that is insoluble in 0.5 M HCl. Microbial reduction of FeIII in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial FeIII reduction on ZnII association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial FeIII reduction altered ZnII bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced ZnII substitution within goethite in the microbially reduced sample, though these data do not show the large increase in the degree of Zn-O-metal interactions expected to accompany this change. In Fe-K-Q, microbial FeIII reduction transforms Zn-O polyhedra from octahedral to tetrahedral coordination and leads to the formation of a ZnCl2 moiety and an increased degree of multiple scattering. This study indicates that, while many sedimentary iron minerals are easily reduced by DMRB, the effects of microbial FeIII reduction on trace metal geochemistry are dependent on sediment mineral composition. 相似文献
12.
E Tipping 《Geochimica et cosmochimica acta》1981,45(2):191-199
The interactions of humic substances from Esthwaite Water with hydrous iron oxides (α-FeOOH, α-Fe2O3, amorphous Fe-gel) have been examined by measuring adsorption isotherms and by microelectrophoresis. In Na+-Cl?-HCO3?at I = 0.002 M (medium I) the extent of adsorption decreases with increasing pH. The results are consistent with a mechanism involving ligand exchange of humic anionic groups with H2O and OH?of surface Fe-OH2+and Fe-OH groups respectively, with an increasing degree of protonation of the adsorbed humics as the adsorption density increases at constant pH.At pH 7 in a medium containing Mg2+, Ca2+ and SO42?, at their Esthwaite Water concentrations and at I= 0.002 M (medium II) the adsorption capacity of goethite (α-FeOOH) is approximately twice that in medium I. Electrophoresis experiments show that the extra capacity is associated with coadsorption of Mg2+ and/or Ca2+ ions.When the iron oxides are added to samples of Esthwaite Water itself they become negatively charged and plots of electrophoretic mobility against pH for the natural water are identical to those in medium II plus humics. 相似文献
13.
The a and c unit cell parameters of M(OH)2, brucite-like structures with M=Mg, Ni, Co, Fe, Mn, Cd, and Ca, are considered in relation to M-O distances taken as the sum of the ionic radii, MVI and OIV. The a parameters are related to (M-O) by flattening of the octahedral coordination groups, with a flattening angle α=97.4±0.4°. The c parameters are divided into the octahedral layer thickness, h(oct), and the interlayer spacing h(inter). The latter is related to the (O-H) distances, which decrease as (M-O) increases. Infrared v(O-H) stretching frequencies vary with (M-O) in the same manner as h(inter) varies with (M-O). The values of v(O-H) decrease as h(inter) decreases and the atomic weight of the cations increases. The results are consistent with previous data for cation-substituted talcs. It is suggested that the M2+ ions associated with the O2? ions modify the reduced mass of the O-H vibrations so that v(O-H) decreases with increasing mass of M. 相似文献
14.
Cation exchange reactions with participation of heavy metals Mn, Co, Ni, Cu, Zn, Cd, Ba, and Pb were studed in oceanic low-temperature hydrothermal deposits of various mineral compositions and in hydrogenic Fe-Mn crusts. Individual minerals and their assemblages differ significantly in absorptive capacity, which increases in the following order: hematite ? Si-protoferrihydrite < protoferrihydrite < geothite < nontronite ? Fe-vernadite + Mn-feroxyhyte < Fe-free vernadite < bernessite + Fe-free vernadite < bernessite; i.e., it successively increases from the mineral with a coordination type of lattice to minerals with a layer-type structure. The exchange complex of all minerals includes Na+, K+, Ca2+, and Mg2+, i.e., the main cations of seawater. In Mn minerals, Mn2+ is the main exchange component. The contribution of all the mentioned cations to the exchange capacity of minerals is as high as 90–98%. The highest absorptive capacity among the examined low-temperature oceanic deposits is characteristic of hydrothermal Mn minerals. Their capacity exceeds substantially that of hydrothermal oxides, hydroxides, Fe-aluminosilicates, and hydrogenic Fe-Mn minerals. The absorptive capacity of all examined Mn minerals relative to heavy metals increases in the same order: Ni < Zn < Cd < Mn < Co < Pb < Cu. 相似文献
15.
Trivalent iron is known to occur in amethysts in three different environments: substitutional with an as yet unidentified alkali ion in an adjacent interstitial site on the twofold axis (so-called S
1 center), substitutional with a proton on one of the four oxygen neighbors (S
2 center) and without detectable charge compensation (so-called I center because it was proposed to be in interstitial sites, but its nature is still disputed). The alkali ion in the S
1 center was now identified as Li and the Li and Fe superhyperfine (shf) tensors were determined by electron paramagnetic resonance at low temperatures in samples of unusually high quality. The fine structure and 1H shf structure tensors for the S
2 center with the proton on an oxygen with longer bond distance were evaluated and the geometry of the oxygen coordination was estimated by application of the superposition model. For the I center the 57Fe and 29Si shf splittings were determined and the evidence in favor of assignment to an interstitial site is reviewed. 相似文献
16.
The amount of hydroxonium or hydroxyl ion sorbed by the sodium form of clays (kaolin, illite or montmorillonite) has been found to increase in proportion with the amount added (i.e., data fits a Boedeker type equation). The adsorptive capacities, and bonding strengths (as evaluated from Langmuir isotherm plots) varied with clay type and nature of the adsorbing species (values for OH? being greater than for H+).The presence of clay suspensions reduced the pH required for total precipitation of heavy metal ions (e.g., Cu, Pb, Cd, Zn), as hydroxy species, and this behaviour has been re-examined in terms of observed pM, pOH relationships and the effect of ligand additions. 相似文献
17.
《Chemical Geology》2006,225(3-4):314-321
Calcite crystals were grown in the presence of small concentrations (50, 200, and 600 ppm) of divalent cations (Ba2+, Sr2+, Co2+ and Mn2+) in a silica hydrogel medium. The calcite crystals grown in the presence of cations larger than Ca2+ (Ba2+ or Sr2+) developed rhombohedral habits defined by {101¯4} form, similar to the morphology of calcite grown in a pure gel. SEM images show that growth on {101¯4} occurs by lateral advancement of layers bounded by macroscopic dendritic or jagged steps. In the case of calcite crystals grown in a gel doped with cations smaller than Ca2+ (Co2+ or Mn2+), a variety of morphologies was obtained, ranging from blocky crystals (at lower concentrations: 50 and 200 ppm) to peanut-like aggregates, spheres and spherulites (at 600 ppm). The macroscopic morphological characteristics of such doped calcite crystals reflect closely the growth behaviour of calcite {101¯4} surface at a nanoscale, reported by previous AFM studies. Morphological features have been interpreted on the basis of the modification of growing steps characteristics as a consequence of asymmetrical cation incorporation. The use of such morphologies as a criterion of biological activity is, therefore, unreliable. 相似文献
18.
We have investigated the kinetics of Fe(III) complexation by several organic ligands including fulvic acid, citrate and ethylenediaminetetraacetic acid (EDTA). Particular attention was given to examination of the effect of competitive divalent cations (Me: Ca2+ and Mg2+) at concentrations typical of seawater on the complexation rate. All experiments were conducted in 0.5 M NaCl solution buffered with 2 mM bicarbonate at pH 8.0 in the absence and presence of Me (25 μM-250 mM). The rate constants of complex formation determined by using the competitive ligand (5-sulfosalicylic acid) method combined with visible spectrophotometry ranged from 3.3 × 104 to 3.2 × 106 M−1 s−1. The mechanism of complexation was then examined based on a kinetic model. When EDTA was used as a ligand, Me at concentrations comparable to the ligand markedly retarded the rate of iron complex formation due to the predominance of an adjunctive pathway (where iron-ligand complex is formed via direct association of iron to Me-ligand complex). In contrast, the competing effect of Me on iron complexation by citrate and fulvic acid was observed only when the Me concentration was in excess of the ligand by more than a factor of 10-1000. The kinetic model suggests that iron complexation by fulvic acid occurs predominantly via a disjunctive pathway (where iron complexation by ligand occurs after dissociation of Me from Me-ligand complex) at concentrations of divalent cations and natural organic matter typical of natural waters including seawater and freshwater. 相似文献
19.
氧化铁矿物对五氯苯酚表面吸附实验及其反应模式 总被引:7,自引:2,他引:7
批量法实验研究表明,五氯苯酚 (PCP)在合成的针铁矿、纤铁矿和赤铁矿表面吸附的浓度等温线为饱和型特征,可用 Langmuir公式拟合,而 pH吸附等温线为峰型曲线,峰值在 pH≈ 5. 矿物表面化合态和 PCP溶液离子化合态分析与计算表明, PCP在氧化铁矿物表面存在两种吸附反应模式,即表面静电吸附反应和表面络合吸附反应,表面静电吸附反应常数比表面络合吸附反应常数高 1~ 2个数量级.并进一步从反应机制上证明了憎水型可离解有机化合物 (HIOCs)在矿物表面吸附的模式与趋向性. 相似文献