首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to investigate the biosorption of an azo dye (Methylene blue) by a wetland phytomass (Typha angustata) under post-phytoremediation scenario. Thus, the phytomass was used without any chemical modification. The batch adsorption experiments were conducted to evaluate the effects of contact time and temperatures (25–45 °C) on the adsorption of methylene blue (MB) from aqueous solution by cattail phytomass (CP). More than 80 % of MB dye was removed from the aqueous solution within first 10 min of the experiment. Langmuir isotherm was modeled to describe the monolayer adsorption of MB dye (R 2 = 0.995) with the maximum adsorption capacity of 8.1 mg/g at 25 °C. Pseudo-second-order kinetic model adequately described the kinetics of absorption process (R 2 = 0.999). The adsorption of MB on the cattail phytomass was a spontaneous and endothermic process that was governed by chemisorption. Hence, CP could be applied as a potential low cost biosorbent to treat dyeing wastewater.  相似文献   

3.
Sugar beet pulp is an abundant, renewable and low-cost precursor for production of activated carbon. In the present study, sugar beet pulp based activated carbon was prepared by using phosphoric acid as activating agent for adsorption of methylene blue. The conditions of preparation process had a significant influence on the adsorption of methylene blue, and the optimal preparation conditions were obtained as follows: liquid-to-solid ratio of 5, temperature of 450 °C and phosphoric acid concentration of 3 mol/L. The properties of sugar beet pulp based activated carbon were characterized by nitrogen adsorption isotherm. The adsorption increases as the increase of contact time, adsorption temperature and pH, and initial concentration of methylene blue. Batch kinetic studies showed that an equilibrium time of 100 min was needed for the adsorption, and the adsorbance of methylene blue is 244.76 mg/g at equilibration. Kinetic models, Weber’s pore diffusion model and Boyd’s equation were applied to the experimental data to study the mechanism of adsorption and the controlled step. The results showed that the adsorption kinetics followed the pseudo-second-order type kinetic model, intraparticle diffusion was not the rate-limiting mechanism and adsorption process was controlled by film diffusion.  相似文献   

4.
Silver nanoparticles (Ag NPs) were synthesized in situ, using a one-step green methodology with Camellia sinensis (green tea) aqueous extract as reducing agent, and supported on a carbonaceous material (Ag-CM), originated from the pyrolysis of sewage sludge. UV–Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Brunauer–Emmet–Teller were used to characterize the nanocomposite. Ag-CM composite exhibited very good catalytic activity in the degradation process of methylene blue (MB) dye in aqueous solution without using sunlight or UV radiation. Batch kinetic and isothermal experiments, using 30 mg/L MB solution, showed that Ag-CM composite removed near to 91 % of MB in 9 h, whereas the carbonaceous material alone removed only 60 % in 30 h. Experimental data were adjusted to different kinetic and isotherms models, where both materials fit the second-order and Langmuir–Freundlich models, respectively; therefore, a chemisorption mechanism probably occurs in these heterogeneous materials.  相似文献   

5.
6.
7.
8.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   

9.
Dried, mature leaves of Aegle Marmelos tree were converted to a powder, which was used as a biosorbent for dyes in water with methylene blue as a case study. The biosorbent had a surface area of 52.63 mg/g, and FTIR spectra showed the presence of –COOH, –NH2, –R–SC=O (thioester) and R1–S(=O, =O)-N(–R2, –R3) groups on the surface. The particles were found to be porous in nature from scanning electron micrographs, and EDX measurements showed the elements C, O, Na, Mg, K, Ca and Fe on the surface. Batch adsorption experiments showed that the adsorption of the dye was preferred at near-neutral conditions. Adsorption equilibrium was achieved in ~120 min with maximum dye uptake of 19.9 mg/g. Investigation into the kinetics of adsorption indicated that second-order kinetics gave the best fit to the experimental data, and a rate coefficient of 8.0 × 10?2 to 32.3 × 10?2 g mg?1 min?1 was obtained.  相似文献   

10.
用一种新的合成方法在水相中合成了钛磁铁矿(Fe3-xTixO4),并用XRD和FTIR对已合成的Fe3-xTixO4进行了表征。结果表明:合成的Fe3-xTixO4为立方晶系尖晶石结构,样品中的钛离子都已经进入Fe3-xTixO4晶格中,且Fe3-xTixO4表面羟基量随着钛掺杂量的增加而增加。随后,以亚甲基蓝为模拟染料污染物,考察了Fe3-xTixO4的吸附性能。实验表明:钛掺杂能够显著促进Fe3-xTixO4对亚甲基蓝的吸附,吸附反应在0.5h内就能达到吸附平衡。  相似文献   

11.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

12.
Degradation of 4-chloro-2-nitro phenol by ozonation in aqueous solution was studied in a semi batch reactor under constant ozone dosage and variable pH conditions. The effectiveness of the process was estimated based on the degree of conversion of 4-chloro-2-nitro phenol. It was observed that ozonation is more effective at alkaline reaction of medium than other conditions. The degree of conversion achieved (at the first 5 minutes of the process)at pH 9 was 99.64% compared to 99.03% and 77.35% at pH 7 and 3, respectively. Another parameter used to quantify the 4-chloro-2-nitrophenol during ozonation was the pseudo first order rate constant k [min?1]. Results showed that the rate constant of the process was approximately much higher at the alkaline pH compared to acidic ones. A considerable improvement in chemical oxygen demand removal was observed at pH above 7. At pH 9, the reduction in chemical oxygen demand at the end of the process reached 56.9 %. The degree of organically bounded nitrogen conversion to nitrate was higher at pH 3. Of the total organic carbon reduction, 15.89 % was observed at pH 9. The 4-chloro-2-nitro phenol degradation intermediate products were analyzed by mass- spectrometry. The main intermediate product was chlorophenol.  相似文献   

13.
14.
Peat of Brunei Darussalam shows a great potential for the removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solution. Carefully controlled batch experiments performed by changing one parameter at a time indicate that the optimum time periods of agitation and settling required for maximum removal of MB are 2.0 and 1.0 h, respectively, while these values for MG are 4.0 and 1.0 h, respectively. The optimum pH is determined to be the ambient value, and under the optimum conditions, 90 % removal of both dyes was determined under laboratory conditions. The equilibrium adsorption data analyzed for various isotherm models suggest that the Sips and Redlich–Peterson (R–P) models are valid for MB and MG, respectively. Further, thermodynamic studies show that the adsorption of both dyes on peat is spontaneous and endothermic. The adsorption capacities (q max) of MB and MG dyes on peat are 0.45 and 0.31 mmol g?1, respectively. Characterization of the surfaces of peat before and after treatment of dyes by SEM and FTIR provides conclusive evidence of adsorption of both dyes. Kinetics studies indicate that the adsorption of both MB and MG dyes is favored toward the pseudo-second-order model, with a little contribution of MG to the pseudo-first-order model. These results suggest that peat is a potential low-cost adsorbent for the removal of MB and MG dyes.  相似文献   

15.
Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and initial concentration of lead. Moreover, adsorption isotherms were investigated to describe the mechanistic feature of this nanocomposite for adsorption. Accordingly, its high adsorption capacity (310 mg/g) and efficient adsorption toward lead ions in aqueous solution were shown. To further study of the chemistry behind the adsorption process, a comprehensive density functional theory-based study was performed, and a relatively strong interaction between metal ions and adsorbent was observed based on the calculated adsorption free energies.  相似文献   

16.
Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment-friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage. Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as biosorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed.  相似文献   

17.
Water supply for consumption is one of the crucial objectives of water supply systems. Using of excessive fertilizer is a main source of nitrate content in water. The high amounts of nitrate in water have a determinable effect on the environment which must be removed due to drinking and industrial water standards. The purpose of this study is nitrate removal from aqueous solution by Electrocoagulation process. The applied pilot was comprised of a reservoir, electrode and power supply. In this study pH, electrical potential difference, nitrate initial concentration, total dissolved solid, kind of electrode, electrode connection methods and number of electrode were studied. Moreover, obtained optimum conditions were tested on Kerman water. The results showed that the electrocoagulation process can reach nitrate to less than standard limit. pH, electrical potential difference, total dissolved solids and number of electrodes have direct effect and initial concentration of nitrate has reverse effect on nitrate removal. This study also showed that under optimum condition, nitrate removal from Kerman water distribution system was 89.7 %. According to the results, Electrocoagulation process is suggested as an effective technique in nitrate removal.  相似文献   

18.
铀污染地下水分布于世界多国,其危害备受关注。本文基于溶胶-凝胶法制备方解石负载羟基磷灰石复合材料(CLHC),通过静态与动态对比试验,探讨了PRB活性介质对水中铀离子的吸附机理和去除效果。试验结果表明,制备的CLHC表面被羟基磷灰石覆盖,对铀离子具有较强的吸附能力。当U的初浓度为5.0 mg/L、试验周期为2 h、溶液pH值为4、CLHC用量为0.5 g/L时,CLHC可以吸附水中所有的铀离子。CLHC对铀离子的吸附过程可以用Langmuir等温吸附模型、粒子内扩散吸附动力学模型和准二级吸附动力学模型较好地进行描述。石英砂负载羟基磷灰石与CLHC相比,后者具有更强的吸附能力,而且具有更长的使用寿命。CLHC在吸附铀的过程中没有价态变化,其对铀离子的吸附主要为离子交换的化学吸附。本研究的成果可为可渗透反应墙被应用于铀污染地下水修复提供试验依据。  相似文献   

19.
The present study attempted to identify the efficient hazardous metal-removing sorbent from specific types of soil, upper and middle layer shirasu, shell fossil, tuff, akadama and kanuma soils of Japan by physico-chemical and metal (arsenic, cadmium and lead) removal characterizations. The physico-chemical characteristics of soil were evaluated using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy techniques, whereas metal removal properties of soil were characterized by analyzing removal capacity and sorption kinetics of potential metal-removing soils. The chemical characteristics revealed that all soils are prevalently constituted of silicon dioxide (21.83–78.58 %), aluminum oxide (4.13–38 %) and ferrous oxide (0.835–7.7 %), whereas calcium oxide showed the highest percentage (65.36 %) followed by silicon dioxide (21.83 %) in tuff soil. The results demonstrated that arsenic removal efficiency was higher in elevated aluminum oxide-containing akadama (0.00452 mg/L/g/h) and kanuma (0.00225 mg/L/g/h) soils, whereas cadmium (0.00634 mg/L/g/h) and lead (0.00693 mg/L/g/h) removal efficiencies were maximum in elevated calcium oxide-containing tuff soil. Physico-chemical sorption and ion exchange processes are the metal removal mechanisms. The critical appraisal of three metal removal data also clearly revealed cadmium > lead > arsenic order of removal efficiency in different soils, except in tuff and akadama soils followed by lead > cadmium > arsenic. It clearly signified that each type of soil had a specific metal adsorption affinity which was regulated by the specific chemical composition. It may be concluded that akadama would be potential arsenic-removing and tuff would be efficient cadmium and lead-removing soil sorbents.  相似文献   

20.
Heavy metals are a threat to human health and ecosystem. These days, great deal of attention is being given to green technologies for purification of water contaminated with heavy metal ions. Biosorption is one among such emerging technologies, which utilizes naturally occurring waste materials to sequester heavy metals from wastewater. Cadmium has hazardous impact on living beings; therefore, its removal through green and economical process is an important task. The aim of the present study was to utilize the locally available Portulaca oleracea plant biomass as an adsorbent for cadmium removal from aqueous solution. The biomass was obtained after drying and grinding the portulaca leaves and stem. No chemical treatment was done on the adsorbent so that it remained green in a true sense. Batch experiments were performed at room temperature. The critical parameters studied were effects of pH, contact time, initial metal ion concentration and adsorbent dose on the adsorption of cadmium. The maximum adsorption was found to be 72 %. The kinetic data were found to best fit the pseudo-second-order equation. High adsorption rates were obtained in the initial 45 min, and adsorption equilibrium was then gradually achieved in about 100 min. Adsorption increased with increase in pH for a range 2 and 6. The equilibrium adsorption results closely followed both the Langmuir and Freundlich isotherms. The values of constants were calculated from isotherms. Results indicated that portulaca plant biomass could be developed as a potential material to be used in green water treatment devices for removal of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号