首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Las Tablas de Daimiel National Park is a series of wetlands which naturally originated from groundwater discharges from the Mancha Occidental aquifer, Spain. Despite the relatively large size of this aquifer, 30 years of intensive groundwater pumping have significantly depleted the water table. As a result, wetlands only remain functional due to artificial inflows. Infiltration loss is therefore a key parameter to evaluate how much water is needed to maintain ecosystem functionality. Although yearly infiltration estimates existed prior to this work, these did not take into account key parameters such as the temporal evolution of the flooded area. This paper presents a more concrete estimate of the average infiltration losses. Infiltration is calculated as the closure term of daily water balances during a period of time where all other elements were known to an acceptable accuracy. A validation mechanism is provided to check the potential utility of the calculated infiltration in wetland management practices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Las Tablas de Daimiel National Park is one of Spain's most representative groundwater‐dependent ecosystems. Under natural conditions, water inflows combined brackish surface water from River Gigüela with freshwater inputs from River Guadiana and the underlying aquifer. Since the mid‐1970s, aquifer overexploitation caused the desiccation of the wetlands and neighbouring springs. The National Park remained in precarious hydrological conditions for three decades, with the only exception of rapid floods due to extreme rainfall events and sporadic water transfers from other basins. In the late 2000s, a decrease in groundwater abstraction and an extraordinarily wet period reversed the trend. The aquifer experienced an unexpected recovery of groundwater levels (over 20 m in some areas), thus restoring groundwater discharge to springs and wetlands. The complex historical evolution of the water balance in this site has resulted in substantial changes in surface and groundwater quality. This becomes evident when comparing the pre‐1980 groundwater quality and the hydrochemical status in the wetland in two different periods, under “dry” and “wet” conditions. Although the system is close to full recovery from the groundwater‐level viewpoint, bouncing back in the major hydrochemical constituents has not yet been obtained. These still appear to evolve in response to the previous overexploitation state. Moreover, in some sectors, there are groundwater‐dependent ecosystems that remain different to those found in preoverexploitation times. The experience of Las Tablas de Damiel provides an observatory of long‐term changes in wetland water quality, demonstrating that the effects of aquifer overexploitation on aquatic ecosystems are more than a mere alteration of the water balance and that groundwater quality is the key to aquifer and aquatic ecosystem sustainability.  相似文献   

3.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Erick Carlier 《水文研究》2007,21(21):2845-2849
The infiltration rate in the unsaturated zone is analysed from a probabilistic point of view. It is shown that the empirical formulas of Horton and Kostiakov, without apparent physical basis, are explained in a probabilistic approach. Horton's formula reflects a Markovian process contrary to Kostiakov's formula. This approach made it possible to explain why Kostiakov's formula is more powerful than that of Horton. A new equation of infiltration is proposed. The three formulas were compared, for four types of soil, with the model of van Genuchten based on the Richards equation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   

6.
Field infiltration tests using portable rainfall infiltrometers were conducted in the Wangjiagou experimental basin in the hilly loess region of north China. Based on data collected at 27 sites, a topographic zonation of infiltration characteristics was observed. The average steady infiltration rate and the average ponding time decreased from the hilltop to the hillslope and further decreased to the gully wall. Such a zonation is closely related to the variations of topography, soil and land use conditions in the study area. A general infiltration model is proposed. Collected field data are used to establish the applicability of the proposed model in the study area.  相似文献   

7.
In the dune area of the Westhoek Nature Reserve, situated in the western Belgian coastal plain, two artificial tidal inlets were made aiming to enhance biodiversity. The infiltration of salt water in these tidal inlets was carefully monitored because a fresh water lens is present in the phreatic dune aquifer. This forms an important source of fresh water which is for instance exploited by a water company. The infiltration was monitored over a period of two years by means of electromagnetic borehole measurements (EM39) and by measurements of fresh water heads and temperature using a large number of observation wells. EM39 observations point to aquifer heterogeneity as a determining factor in the movement of the salt infiltration water. It is shown that part of the infiltration water moves further in the dunes instead of towards the sea. On the long term run, possibility exists that salt water enters the extraction’s capture zone. This issue needs further monitoring and study. Fresh water head and temperature data illustrate that the main period of infiltration is confined to spring tide when large amounts of salt water enter the tidal inlets.  相似文献   

8.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A study of drip water from a stalactite in the Cueva del Agua (Granada, southern Spain) over four hydrological years has enabled a detailed characterization of infiltration through the non‐saturated zone of this cave. The most significant aspects are: (1) The drip water regime is not seasonal, but is linked instead to slow infiltration. Sudden changes in the drip water regime are detected, due to infiltration along the preferential flow paths and the draining of water of supersaturated water reserves from the microfissure and pore system. (2) The accumulation of excess rain in the unsaturated zone dislodges the reserve of supersaturated water from the matrix of microfissures and pores, giving rise to an average increase in drip intensity of 2·2 ± 0·5 mm h?1 and 37 ± 13 µS cm?1 in the electrical conductivity of the water. (3) Time‐series analysis of the drip water demonstrates a lack of linearity over time of the drip rate, indicating a chaotic regime. (4) When the dripping is constant, barometric oscillation of the air is the principal factor that causes the lack of linearity in the drip flow. In this way, over an average of 2–3 days, a mean variation of the air pressure inside the cave of 10 ± 3·7 mbar causes a mean oscillation in the drip rate of 0·5 ± 0·2 mm h?1. This increase in air pressure is translated as an increase in the relative thickness of the gaseous phase of the drip water at the cost of the aqueous phase, so reducing the drip intensity of the stalactite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The importance of characterizing the ecohydrological interactions in natural, damaged/drained, and restored bogs is underscored by the importance of peatlands to global climate change and the growing need for peatland restoration. An understudied aspect of peatland ecohydrology is how shallow lateral flow impacts local hydrological conditions and water balance, which are critical for peatland restoration success. A novel method is presented using microcosms installed in the field to understand the dynamics of shallow lateral flow. Analysis of the difference in water table fluctuation inside and outside the microcosm experimental areas allowed the water balance to be constrained and the calculation of lateral flow and evapotranspiration. As an initial demonstration of this method, a series of four microcosm experiments were set up in locations with differing ecological quality and land management histories, on a raised bog complex in the midlands of Ireland. The timing and magnitude of the lateral flow differed considerably between locations with differing ecological conditions, indicating that shallow lateral flow is an important determining factor in the ecohydrological trajectory of a recovering bog system. For locations where Sphagnum spp. moss layer was present, a slow continuous net lateral input of water from the upstream catchment area supported the water table during drought periods, which was not observed in locations lacking Sphagnum. Consistent with other studies, evapotranspiration was greater in locations with a Spaghnum moss layer than in locations with a surface of peat soil.  相似文献   

11.
Determining the content of 18O and deuterium in the groundwater at the southern edge of the Sierra de Gador, between October 1991 and March 1993, has enabled identification of the flow system of the waters, the recharge and mixing processes and the possible mechanisms of salinization. Analysis of the precipitation indicates the dominant source and direction of the air masses. The local meteoric water line that is established indicates a primarily Mediterranean origin for the precipitation recharging the aquifers. The variation of 18O content with altitude (−0·35 per mille per 100 m) enables an estimation of the principal recharge area, which corresponds to a zone between 1200 and 1800 m a.s.l. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

In many arid and semi-arid countries, wastewater irrigation is becoming a common practice in agriculture. In this study, the effect of long-term (40 years) wastewater irrigation on selected physical and hydraulic properties of soil in different parts of a landscape was investigated. The performance of some infiltration models, including Philip (Ph), Kostiakov (Kos), Kostiakov-Lewis (Kos-L), Horton (Ho), Huggins and Monke (Hug-M), and linear and nonlinear Smith-Parlange (S-P(L) and S-P(NL)), was compared. This study was performed in the Urmia region, Iran, where flooding wastewater irrigation has been practised for at least 40 years. Five paired sites, each of which contained a measurement location at the wastewater-irrigated (WWI) and adjacent control area were studied. Accuracy of the infiltration models was evaluated using several statistical criteria, including root mean square error (RMSE) and Akaike information criterion (AIC). The models were classified into groups using cluster analysis based on level of similarity in their performance. The cumulative water infiltration into soils after 1 h (I1h) was calculated using the selected most accurate models and introduced so as to use only one term to compare the infiltration behaviour of soils. Based on RMSE and AIC, the performance of the Ph, Ho, Kos and Kos-L models was considerably better than that of Hug-M, S-P(L) and S-P(NL). The ranking of the models in terms of their AIC values was: Kos-L > Ho > Kos > Ph > S-P(L) > Hug-M > S-P(NL). The models were classified into two distinct groups. The similarity among Ph, Ho, Kos and Kos-L models was more than 80% and for Hug-M, S-P(L), and S-P(NL) models, it was more than 79%. However, the similarity between these two groups of models was less than 58%.
Editor M.C. Acreman; Associate editor not assigned  相似文献   

13.
This study has investigated the use of the artificial sweetener acesulfame and the magnetic resonance imaging contrast agent gadolinium as quantitative tracers for river water infiltration into shallow groundwater. The influence of a river on alluvial groundwater in a subalpine catchment in western Europe has been assessed using the ‘classical’ hydrochemical tracer chloride and the trace contaminants acesulfame and anthropogenic gadolinium. Mixing ratios for riverine bank filtrate with ambient groundwater and the uncertainties associated with the temporal and spatial tracer variability were calculated using acesulfame and gadolinium and compared with those obtained using chloride. The temporal variability of tracer concentrations in river water of gadolinium (standard deviation SD: 63%) and acesulfame (SD: 71%) both exceeded that of chloride (SD: 27%), and this was identified as the main source of uncertainty in the mixing analysis. Similar spatial distributions were detected in the groundwater for chloride and gadolinium, but not for acesulfame. Mixing analyses using acesulfame resulted in calculated mixing ratios that differed from those obtained using gadolinium and chloride by up to 83% and 92%, respectively. At the investigated site, which had oxic conditions and moderate temperatures, acesulfame was found to be a less reliable tracer than either gadolinium or chloride, probably because of natural attenuation and input from other sources. There was no statistically significant difference between the mixing ratios obtained using chloride or gadolinium, the mixing ratios obtained using gadolinium were 40–50% lower than those obtained using chloride. This is mainly due to a bias of the mean gadolinium concentration in river water towards higher values. In view of the uncertainties of the two tracers, neither could be preferred over the other for the quantification of bank filtrate in groundwater. At this specific site gadolinium was able to reliably identify river water infiltration and was a more precise tracer than chloride at low mixing ratios (<20%), because of the exclusive occurrence of gadolinium in river water and its high dynamic range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

Soil infiltration processes were evaluated under field conditions by double-ring infiltrometers with different underlying surfaces in permafrost regions of the Tibetan Plateau. The results show that initial infiltration rates, stable soil infiltration rates and cumulative soil infiltration are strongly dependent on the underlying surface types, with the highest initial and stable soil infiltration rates in the alpine desert steppe, and the lowest in alpine meadow. The effects of soil moisture and texture on infiltration processes were also assessed. Within the same underlying surfaces, the values of infiltration parameters increased with the amount of vegetation cover, while soil moisture and soil infiltration rates displayed opposing trends, with fitting slopes of ?0.03 and ?0.01 for the initial and stable soil infiltration rates, respectively. The accuracies of the five models in simulating soil infiltration rates and seven models in predicting cumulative infiltration rates were evaluated against data generated from field experiments at four sites. Based on a comparative analysis, the Horton model provided the most complete understanding of the underlying surface effects on soil infiltration processes. Altogether, these findings show that different underlying surfaces can alter soil infiltration processes. This study provides a useful reference for understanding the parameterization of land surface processes for simulating changes in hydrological processes under global warming conditions in the permafrost region on the Tibetan Plateau.  相似文献   

15.
《水文科学杂志》2013,58(2):349-362
Abstract

A methodology of time-step estimation for numerically solving the Richards equation is discussed. Its importance in simulating water movement in unsaturated—saturated soils is shown for infiltration into a soil profile by applying various time-step estimations and boundary conditions for different soils. In order to test the results of the computations, infiltration theory was applied. According to infiltration theory, the pressure head in the initially unsaturated part will not take positive values as long as the moisture front has not reached the phreatic level, or, in the case of a profile with a free-draining lower boundary, it is not saturated at the base. In other cases, the appearance of positive values of the pressure head produces incorrect values for the inflow rate q.  相似文献   

16.
Two models for estimating expected areal‐average infiltration rate, ī, at the hillslope scale are presented. The first relies upon the condition of a negligible infiltration of surface water running downslope (run‐on process) into a previous heterogeneous soil. It is an adapted version of an earlier semi‐analytical model. The second incorporates the run‐on process and is based on a lumped approach that uses an effective saturated hydraulic conductivity. This latter was parameterized in terms of the main characteristics of rainfall and soil. Both the models were tested by comparison with the results carried out by Monte‐Carlo simulations over different soil types. It was found that the first model simulated ī with maximum errors in magnitude typically less than 10%. The second model provided similar errors in the total volume of overland flow, and the rising limb of the hydrograph experienced a distortion. Lastly, satisfactory results were obtained by comparing the model without run‐on with an empirical approach particularly accurate for fine‐textured soils. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
David D. J. Antia 《水文研究》2008,22(14):2595-2614
Infiltration devices are traditionally evaluated as standalone entities that do not interact with each other. A model is outlined that will allow interactions between proposed infiltration devices to be predicted prior to a development commencing. The model allows prediction of seepage into downslope devices and the assessment of the locations where the combined ground‐water mound will reach the surface and result in overland flow. The volume of overland flow discharged by the seepage zone may exceed the overland and piped flow received by the infiltration devices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Uri Schwartz 《水文研究》2016,30(20):3704-3716
Although floods in arid environments have been documented, considerable uncertainties still exist as to the floodwater and in‐channel infiltration relationships. In desert alluvial channels, the prime cause of flood discharge attenuation is water loss by infiltration into the alluvium. The present study documents flows in Nahal Zin, Israel, their infiltration into the channel bed, and the resultant change in the alluvium moisture content. The study uses a systematic combination of two experimental scales, the cross‐section scale and the reach scale. Direct measurements of moisture distribution in the active channel during floods were made using time domain reflectometry. Twelve flow events were recorded. Flow patterns and their respective alluvium moisture content were analysed. A trench was dug in the alluvium for the study of alluvium properties and time domain reflectometry sensor installation. The alluvium was characterized in terms of size distribution and sediment stratigraphy, structure, and composition. Two main alluvial structures (closed and open) affected the advance of the wetting front and water losses. Alluvial units with an open structure (clast‐supported) reached their maximum moisture content faster than closed structure units (matrix‐supported). Small‐sized particles and matrix‐supported layers reduced infiltration rate. The measured velocities of the wetting front were 0.33 and 2.88 m h?1 for small and large floods respectively. The wetting front moved downward. Lateral movement was negligible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The operation of the Three Gorges Reservoir (TGR) is an important driver of the recent hydrological changes in the lowlands of Dongting Lake, China. Nevertheless, there has been no convincing study on the quantitative effects of the TGR regulation on the wetland inundation process. Here, the temporal and spatial patterns of the response of wetland inundation in Dongting Lake to the TGR regulation are addressed in detail using a two-dimensional hydrodynamic model, which can accurately reproduce the flooding and drying processes. The results show that temporal patterns of wetland inundation are altered by the TGR regulation, especially in the water pre-releasing period (May to early June) and the water storing period (late September to November). Spatially heterogeneous effects are also observed in Dongting Lake. These findings can help us to take measures at an early stage to effectively deal with the possible adverse effects of the normal operation of the TGR on Dongting Lake.

Editor D. Koutsoyiannis; Associate editor A. Porporato

Citation Lai, X., Jiang, J., and Huang, Q., 2013. Effects of the normal operation of Three Gorges Reservoir on wetland inundation in Dongting Lake, China: a modelling study. Hydrological Sciences Journal, 58 (7), 1467–1477.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号