首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The removal of petroleum and petroleum-based products from the environment is of great importance. The objectives of this study were to investigate the most suitable physiological conditions and the effects of additional carbon, nitrogen and surfactant sources on petroleum biodegradation by Klebsiella pneumoniae ATCC13883 isolated from drilling fluid and to evaluate petroleum biodegradation with detailed hydrocarbon analysis by GC–MS. The results indicated that the highest biodegradation rate of 66.5% for K. pneumoniae was obtained under the conditions of pH 7, petroleum concentration 1% (v/v) and 7-day incubation at 150 rpm and 25 °C, proving to be the most effective physical conditions for petroleum biodegradation in this present study. Additional sources such as Triton X: 100, glucose and yeast extract significantly enhanced the petroleum biodegradation of K. pneumoniae to 68, 71 and 72.5%, respectively. In the last stage of this study, biodegradation rates were above 90% for hydrocarbons ranging from C10 and C20, above 70% for hydrocarbons ranging from C21 and C22 and above 40% for hydrocarbons ranging from C31 and C32. In conclusion, oil field adapted K. pneumoniae could efficiently degrade short-, medium- and long-chain alkanes in petroleum and thus is a potential source for advanced petroleum treatment.  相似文献   

2.
The use of microbial consortia to remove contaminants in industrial systems and in natural environments could be an alternative to the use of unique strains of microorganisms, since microbial consortia have greater robustness to environmental fluctuations. However, it is necessary to evaluate the relationship between the genetic structure and functionality of the consortia. In this work, the functional and structural stability over time of two bacterial consortia (C5 and C6) with the potential to remove CO2 and H2S from biogas was evaluated. Both consortia decreased the dissolved CO2 by over 30% at the end of the incubation period, but C5 presented shorter removal kinetics (3.9 days) than C6 (6.4 days). Additionally, a chemical oxidation of H2S could have occurred in the microcosms. Moreover, both consortia presented a stable genetic structure, measured by terminal restriction fragment length polymorphism profiles of the 16S rRNA gene, characterized by high homogeneity and prevalence of the genus Rhodopseudomonas throughout the incubation period, and an increasing abundance of Xanthobacter during the exponential phase of the growth curve in C5, which would account for the functionality of the consortia.  相似文献   

3.
Four bacterial strains, capable of degrading diesel oil, n-alkanes or hexadecane, were isolated from soils contaminated with petroleum oil and identified. Strains of Pseudomonas sp., Pseudomonas putida TPHK-1 and Pseudomonas aeruginosa TPHK-4, were more efficient in degrading high concentrations of the hydrocarbons than the other two strains, Stenotrophomonas maltophilia TPHK-2 and Acenitobacter sp. TPHK-3. P. putida TPHK-1 exhibited tolerance to very high concentrations of heavy metals such as cadmium, lead, zinc and copper. The innate ability of P. putida TPHK-1, as evidenced by the amplified genes alkB1 and alkB2 that encode alkane hydroxylases, and cat12o and cat23o coding for catechol dioxygenase, in degrading diesel oil in the presence of heavy metals is far greater than that of the strains reported in the literature. Heavy metal tolerance coupled with rapid degradation of hydrocarbons, even at high concentrations, suggests that P. putida TPHK-1 has a great potential in remediating soils contaminated with mixtures of hydrocarbons and heavy metals.  相似文献   

4.
The key components of S. triqueter root exudates involved 4-oxo-pentanoic acid, succinic acid, glutaric acid, phthalate acid, citric acid, vanillic acid, myristic acid, pentadecanoic acid, decanoic acid, 14-methyl-pentadecanoic acid, hexadecanoic acid, octadecanoic acid and oleic acid, and the content of the water-soluble organic acids (citric acid, succinic acid and glutaric acid) significantly increased in pyrene and lead co-contaminated rhizosphere soil. These three water-soluble organic acids including citric acid, succinic acid and glutaric acid were detected as the specific root exudates of S. triqueter under stress of pollutants for pyrene and lead, so they were chosen as the research objects, and they were added into the bioremediation systems of pyrene and lead co-contaminated wetland soils. Compared with the control, the treatments added the three organic acids always improved the quantity of the bioavailable fraction of pyrene and lead in wetland soils and greatly influenced other chemical states of pyrene and lead fractions in the test concentration range. Under the 50 g kg?1 of organic acids concentration, the amount of the bioavailable fraction of pyrene and lead increased 41.0 and 872.7 % by citric acid, respectively. The enhancement of bioavailability of pyrene and lead in the wetland soil by adding organic acids generally decreased in the following order: citric acid > succinic acid > glutaric acid. Enhancing effects of organic acids on the bioavailability improvement of pyrene and lead is remarkable.  相似文献   

5.
The development of the bioaugmentation during the phytoremediation of contaminated water with diesel in pilot horizontal subsurface flow constructed wetlands was investigated for 63 days. The objective of this study was to examine the enrichment of rhizobacteria in a pilot-scale system for efficient treatment of total petroleum hydrocarbon (TPH) effluent. A consortium of three rhizobacteria strains (Bacillus aquimaris, Bacillus anthracis and Bacillus cereus), which were able to utilize hydrocarbon compounds as sole carbon sources, was injected into the constructed wetlands (batchwise operation) planted with Scirpus grossus. The TPH removals from water, without or with the addition of rhizobacteria, were found to be 72 and 84%, while from sand was found to be 59 and 77%, for each treatment, respectively. These results showed that the rhizobacteria strains could enhance S. grossus growth by decreasing diesel stress and protecting S. grossus against diesel, with 12 and 18% additional TPH removal from water and sand, respectively. Our results demonstrate that S. grossus is potential to improve the phytoremediation of hydrocarbon contaminants through inoculation with effective rhizobacterial strains.  相似文献   

6.
Chlorinated hydrocarbons can cause serious environmental and human health problems as a result of their bioaccumulation, persistence and toxicity. Improper disposal practices or accidental spills of these compounds have made them common contaminants of soil and groundwater. Bioremediation is a promising technology for remediation of sites contaminated with chlorinated hydrocarbons. However, sites co-contaminated with heavy metal pollutants can be a problem since heavy metals can adversely affect potentially important biodegradation processes of the microorganisms. These effects include extended acclimation periods, reduced biodegradation rates, and failure of target compound biodegradation. Remediation of sites co-contaminated with chlorinated organic compounds and toxic metals is challenging, as the two components often must be treated differently. Recent approaches to increasing biodegradation of organic compounds in the presence of heavy metals include the use of dual bioaugmentation; involving the utilization of heavy metal-resistant bacteria in conjunction with an organic-degrading bacterium. The use of zero-valent irons as a novel reductant, cyclodextrin as a complexing agent, renewable agricultural biosorbents as adsorbents, biosurfactants that act as chelators of the co-contaminants and phytoremediation approaches that utilize plants for the remediation of organic and inorganic compounds have also been reported. This review provides an overview of the problems associated with co-contamination of sites with chlorinated organics and heavy metals, the current strategies being employed to remediate such sites and the challenges involved.  相似文献   

7.
Crude oil and its derivatives because of different events and accidents may cause pollution to the environment. A biological treatment is a novel technique that uses microorganisms to remove or neutralize pollutants from a contaminated site. Oil-contaminated soils were sampled, after isolating of soil bacteria, using quantitative and qualitative screening, biosurfactant-producing bacteria were identified and environmental factors on the growth of bacteria and biosurfactant were investigated. In this study, the Bacillus subtilis was identified as the best biosurfactant-producing strain which has the ability to grow in environments with high salinity and temperature and pH > 5. The produced biosurfactant from B. subtilis is stable to changes in temperature and salt concentration and pH (in the range of 5–12).The B. subtilis also showed that they are able to biodegrade aliphatic alkanes. The B. subtilis has necessary potential for bioremediation of oil pollution in the environment.  相似文献   

8.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

9.
This article describes a complete sedimentary succession of an ancient macrotidal tide-dominated estuarine system based on the detailed outcrop study. The Eocene siliciclastic sedimentary facies of Ameki Group in the south-eastern Nigeria provides a record of the sedimentary response to an initial regression, followed by marine incursion (transgression) into the Niger Delta Basin. These sedimentary successions are analogues to the subsurface petrolific Niger Delta lithostratigraphic units. Seven facies associations (FA 1 to FA 7) are documented in the study area and the sediments are interpreted as fluvial channel, tidally influenced fluvial channel, tidal channel, tidal flats, supratidal, tidal sand bar and estuarine embayment (open estuarine) deposits. The occurrence of low diversity ichnofaunal assemblages and/or localised high-density monospecific ichnofossil assemblages indicates brackish-water condition typical of estuarine settings. The suites of assemblages include Scoyenia, Skolithos, Cruziana, mixed Skolithos-Cruziana, Glossifungites, Psilonichnus and Teredolites ichnofacies. A complete depositional sequence is encountered in the Eocene Ameki Group which consists of the lowstand, transgressive, highstand and falling stage systems tracts. This depositional succession was most probably controlled by relative sea level changes, sediment supply, accommodation and regional tectonics which affected the development of Niger Delta Basin.  相似文献   

10.
Bioremediation of oil spillage in soils using consortia of microbes beckons much exploration. The present study involves bioremediation of oil-contaminated soils from north Chennai, India, using indigenous microbial consortia. Totally, 32 positive oil degrading isolates were obtained from 3 different locations, i.e., petrol filling stations, automobile workshops and oil refineries. Substrate utilization patterns of individual isolates and the consortial sets were observed. Mixture of three common hydrocarbons (petrol, diesel and engine oil) was used for studies. The substrate oil utilized by consortia was taken for thin-layer and column chromatography which perfectly resulted in varied fractions of oil compared to the unused oil as control. The best consortia were used directly for bioremediation experiment. Three different oil-contaminated soils were used and bioremediation patterns were observed. The rate of bioremediation differed within soils, nevertheless all soils were almost 100 % reclaimed within 30 days. Bioremediation kinetics showed that the process corresponds to first-order kinetics and kinetic constants for the different soils ranged from 0.051 to 0.077/day. Assessment of detoxification of acute phytotoxicity owing to the pollutant oil was done, and results observed were significant. An increase of 25, 300 and 212 % in germination index, average growth index and sustenance index, respectively, of Trigonella foenum-graecum Linn. in treated soils was observed, compared to untreated soils. Thus, this study confirmed that microbes in ‘Consortial Union’ serve as better treating agents in bioremediation of oil-contaminated soils than individual microorganisms.  相似文献   

11.
The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007–2010 was evaluated with biogeochemical, light microscopy, physiological, and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and showed a tendency for enhanced microbial secondary production. Taken together, these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.  相似文献   

12.
Aquaculture currently provides half of all fish for human consumption, and this proportion is expected to increase to meet the growing global demand for protein. As aquaculture, including oyster farming, expands, it is increasingly important to understand effects on coastal ecosystems. The broad-scale ecological effects of oyster aquaculture are well documented; however, less is known regarding the influence of oyster aquaculture on sediment bacterial communities. To better understand this relationship, we compared three different oyster farming practices that varied in oyster biomass and proximity of oysters to the sediment. We used high-throughput sequencing and quantitative polymerase chain reaction to examine the effect of oyster farming on sediment bacterial communities. We examined the entire bacterial community and looked specifically at bacteria that support essential estuarine ecosystem services (denitrifiers), as well as bacteria that can be detrimental to human health (members of the Vibrio genus). We found that oyster biomass increased Vibrio richness and sediment carbon content, which influenced bacterial community composition. When compared to reference sites, the overall abundance of bacteria was increased by the bottom planting method, but the associated increases in denitrifiers and Vibrio were not significant. We were unable to detect V. parahaemolyticus, V. vulnificus, or V. cholera, the three most common Vibrio pathogens, in any sample, suggesting that oyster farming did not enhance these potential human pathogens in sediments at the time of sampling. These results highlight how differences in oyster farming practice can affect sediment bacterial communities, and the ecosystem services they provide.  相似文献   

13.
Two species of burrowing shrimp occur in high densities in US West Coast estuaries, the ghost shrimp, Neotrypaea californiensis, and the blue mud shrimp, Upogebia pugettensis. Both species of shrimp are considered ecosystem engineers as they bioturbate and irrigate extensive galleries within the sediment. While their burrows comprise a dominant habitat type in west coast estuaries, little is known about these shrimps’ diet and their role in estuarine food webs. The primary goals of this study were to identify major components of burrowing shrimp diets and detect variation in these diets along an estuarine gradient using combined fatty acid (FA) and stable isotope (SI) analyses. Shrimp and potential food sources including eelgrass blades, epiphytes, Ulva, sedimentary particulate organic matter (SPOM), burrow walls, and particulate organic material (POM) were sampled at different locations within Yaquina Bay, Oregon in August 2012. Both SI and FA analyses indicated differences in food resources assimilated by shrimp along the estuarine gradient. SI values showed that diets for U. pugettensis consisted of carbon sources derived primarily from POM and SPOM, while POM and epiphytes were primary carbon sources for N. californiensis. Shrimp from lower estuarine sites had high levels of 16:1ω7 and 20:5ω3 FAs suggesting their diet is enriched with marine diatoms. Shrimp from upriver showed greater proportion of FA associated with dinoflagellates and terrestrial sources as indicated by a high percentage of C18 polyunsaturated FAs (PUFAs). This is the first study to evaluate diets of these two shrimp species using complimentary FA and SI approaches.  相似文献   

14.
A two-stage system for octachlorinated dibenzo-p-dioxin (OCDD)-contaminated soil remediation was developed. Soil washing using emulsified oil (EO) was applied in the first stage for OCDD extraction followed by the second stage of bioremediation using P. mendocina NSYSU for remaining OCDD biodegradation. The major tasks included (1) determination of optimal soil washing conditions for OCDD extraction by EO, (2) evaluation of feasibility of OCDD biodegradation by P. mendocina NSYSU under aerobic cometabolic conditions using EO as the primary substrate, and (3) assessment of the effectiveness of OCDD removal using the two-stage system. During the soil washing stage, EO with two different oil-to-water ratios (1:50 and 1:200) and pore volumes were tested with initial soil OCDD concentration of 21,000 µg/kg. Results indicate that EO could effectively improve the solubility and desorption of OCDD in soils. Up to 74% of OCDD removal could be obtained after washing with 60 PVs of EO and dilution factor of 50. After the soil washing process, enriched P. mendocina NSYSU solution was added into the reactor to enhance the aerobic biodegradation of remaining OCDD in soils. P. mendocina NSYSU could use adsorbed EO globules as substrates and caused significant OCDD degradation via the aerobic cometabolic mechanism. Approximately 82% of the remaining OCDD could be removed after 50 days of operation, and P. mendocina NSYSU played important roles in OCDD biodegradation. Up to 87% of OCDD was removed through the EO washing and biodegradation process. The two-stage system is a potential technology to remediate dioxin-contaminated soils.  相似文献   

15.
The aim of this research was to evaluate the potential of six legumes: Medicago sativa L., Glycine max, Arachis hypogea, Lablab purpureus, Pheseolus vulgaris and Cajanus cajan to restore within a short period of time soil contaminated with 3% crude oil. The legumes in five replications were grown in crude oil-contaminated and crude oil-uncontaminated soil in a completely randomized design. Plants were assessed for seedling emergence, plant height and leaf number. GC–MS was used to analyze the residual crude oil from the rhizosphere of the legumes. Plant growth parameters were reduced significantly (P < 0.05) for legumes in contaminated soil compared to their controls. In the 4th week after planting (WAP), shoot height increased across the species up to the 8th WAP. However, in the 12 WAP no significant increase in the shoot of all species was observed. Two WAP legumes planted in contaminated soil had significantly (P < 0.05) higher leaf number than these planted in uncontaminated soil with the exception of M. sativa. In the 4th WAP, only A. hypogea and P. vulgaris had increased leaf number, while in the 6th WAP, only L. purpureus had increased leaf number and survived up to the 12th WAP while most of the legumes species died. Chromatographic profiles indicated 100% degradation of the oil fractions in C. cajan and L. purpureus after 90 days. For other legumes however, greater losses of crude oil fractions C1–C10 and C10–C20 were indicated in rhizosphere soil of P. vulgaris and G. max, respectively. The most effective removal (93.66%) of C21–C30 components was observed in G. max-planted soil even though vegetation was not established. The legumes especially C. cajan, L. purpureus and A. hypogea are promising candidates for phytoremediation of petroleum hydrocarbon-impacted soil.  相似文献   

16.
Novel bionanocomposites, S. cerevisiae–AgNPs, were synthesized by in situ formation of AgNPs on S. cerevisiae surface using fulvic acids as reductants under simulated sunlight. S. cerevisiae–AgNPs were characterized using UV–Vis spectroscopy, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. These analyses showed that AgNPs were distributed on the surface of S. cerevisiae. The application of S. cerevisiae–AgNPs in bacteria killing and heavy metal removal was studied. S. cerevisiae–AgNPs effectively inhibited the growth of E. coli with increasing concentrations of S. cerevisiae–AgNPs. E. coli was killed completely at high concentration S. cerevisiae–AgNPs (e.g., 100 or 200 µg mL?1). S. cerevisiae–AgNPs as excellent heavy metal absorbents also have been studied. Using Cd2+ as model heavy metal, batch experiments confirmed that the adsorption behavior fitted the Langmuir adsorption isotherms and the Cd2+ adsorption capacity of S. cerevisiae–AgNPs was 15.01 mg g?1. According to adsorption data, the kinetics of Cd2+ uptake by S. cerevisiae–AgNPs followed pseudo second-order kinetic model. Moreover, S. cerevisiae–AgNPs possessed ability of different heavy metals’ removal (e.g., Cr5+, As5+, Pb2+, Cu2+, Mn2+, Zn2+, Hg2+, Ni2+). The simulated contaminated water containing E. coli, Cd2+ and Pb2+ was treated using S. cerevisiae–AgNPs. The results indicated that the bionanocomposites can be used to develop antibacterial agents and bioremediation agents for water treatment.  相似文献   

17.
In present investigation, consortia of two indigenous heterocystous cyanobacteria, Nostoc ellipsosporum HH-205 and Nostoc punctiforme HH-206 isolated from a salt affected area of Hisar, Haryana (India) were used as biofertilizer in bioremediation of salt affected soils having high electrical conductivity (13.5 dS/m) and pH (8) with poor organic carbon (0.3%) as well as nitrogen content (0.008%). The experiments were conducted in a pot house for the period of 240 days. There was a significant (P < 0.05) increase in carbon, phosphate, nitrogen, potassium, magnesium, cation exchange capacity, mean weight diameter and hydraulic conductivity of soil with biofertilizer treatment whereas sodium ion and electrical conductivity were found to be decreased. Improvement in soil aggregation and stability due to increased soil microbial activities (dehydrogenase, invertase and phosphomonoesterase) were also observed. Significant increase in growth and yield of pearl millet–wheat crop was observed in amended pots even under low water regime. Thus, the indigenous cyanobacterial species show promise in effective exploitation for phytoremediation and improved productivity of saline soils under semi-arid condition.  相似文献   

18.
Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.  相似文献   

19.
Waste engine oil causes a vital environmental pollution when it spill during change and transportation and products of waste engine oil causes lethal effects to the living systems. Thus, abiotic and biotic approaches are being extensively used for removal of waste engine oil pollution. Therefore in present study, waste engine oil degradation was accomplished by a new bacterial culture, isolated from the soil by an enrichment technique. Morphological, biochemical and gene sequence analysis revealed that isolate was Bacillus cereus. Subsequently, biodegradation potential of B. cereus for waste engine oil was studied. Experimental variables, such as pH, substrate concentration, inoculum size, temperature and time on the biodegradation, were checked in mineral salt medium. The biodegradation efficiency of B. cereus was determined by gravimetry, UV–visible spectrophotometry and gas chromatography. In addition, waste engine oil was also characterized by GC–MS and FTIR for its major constituents, which showed total 38 components in waste engine oil, including hopanes, benzopyrene, long-chain aliphatic hydrocarbons, dibenzothiophenes, biphenyl and their derivatives. Results of successive biodegradation indicated that B. cereus was capable to degrade 1% of waste engine oil with 98.6% degradation potential at pH 7 within 20 days. Hence, B. cereus presents an innovative tool for removing the engine oil from the contaminated area.  相似文献   

20.
Phenotypic variation within species can have community- and ecosystem-level effects. Such variation may be particularly important in ecosystem engineers, including many invasive species, because of the strong influence of these species on their surrounding communities and environment. We combined field surveys and glasshouse experiments to investigate phenotypic variation within the invasive common reed, Phragmites australis, among four estuarine source sites along the east coast of North America. Field surveys revealed variation in P. australis height and stem density among source sites. In a glasshouse environment, percent germination of P. australis seeds also varied across source sites. To test the degree to which phenotypic variation in P. australis reflected genetic or environmental differences, we conducted a glasshouse common garden experiment assessing the performance of P. australis seedlings from the four source sites across a salinity gradient. Populations maintained differences in morphology and growth in a common glasshouse environment, indicating a genetic component to the observed phenotypic variation. Despite this variation, experimentally increased porewater salinity consistently reduced P. australis stem density, height, and biomass. Differences in these morphological metrics are important because they are correlated with the impacts of invasive P. australis on the ecological communities it invades. Our results indicate that both colonization and spread of invasive P. australis will be dependent on the environmental and genetic context. Additional research on intraspecific variation in invasive species, particularly ecosystem engineers, will improve assessments of invasion impacts and guide management decisions in estuarine ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号