首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A large mainshock may trigger numerous aftershocks within a short period, and nuclear power plant (NPP) structures have the probability to be exposed to mainshock–aftershock seismic sequences. However, the researchers focused on seismic analyses of reinforced concrete containment (RCC) buildings under only mainshocks. The aim of this paper is to thoroughly investigate the dynamic responses of a RCC building under mainshock–aftershock seismic sequences. For that purpose, 10 as-recorded mainshock–aftershock seismic sequences with two horizontal components are considered in this study, and a typical three-dimensional RCC model subjected to the selected as-recorded seismic sequences is established. Peak ground accelerations (PGAs) of mainshocks equal to 0.3 g (safe shutdown earthquake load-SSE load) are considered in this paper. The results indicate that aftershocks have a significant effect on the responses of the RCC in terms of maximum top accelerations, maximum top displacements and accumulated damage. Furthermore, in order to preserve the RCC from large damage under repeated earthquakes, local damage and global damage indices are suggested as limitations under only mainshocks.  相似文献   

2.
Strong aftershocks have the potential to increase the damage state of the structures due to the damage accumulation. This paper investigates the damage spectra for the mainshock–aftershock sequence-type ground motions with Park–Ang damage index. A method of simulating the mainshock–aftershock sequence-type ground motions is proposed based on the modified form of Bath's law and NGA ground motion prediction equation. The damage spectra are computed using the recorded and simulated sequence-type ground motions, and the effects of period of vibration, strength reduction factor, site condition, seismic sequence, damping ratio and post-yield stiffness on damage spectra are studied statistically. The results indicate that the effect of aftershock on structural damage is significant and recorded sequence-type ground motions may underestimate the damage of long-period structures due to the incompleteness of dataset. A simplified equation is proposed to facilitate the application of damage spectra in the seismic practice for mainshock–aftershock sequence-type ground motions.  相似文献   

3.
Current seismic design codes and damage estimation tools neglect the influence of successive events on structures. However, recent earthquakes have demonstrated that structures damaged during an initial event (mainshock) are more vulnerable to severe damage and collapse during a subsequent event (aftershock). This increased vulnerability to damage translates to increased likelihood of loss of use, property, and life. Thus, a reliable risk assessment tool is required that characterizes the risk of the undamaged structure subjected to an initial event and the risk of the damaged structure under subsequent events. In this paper, a framework for development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a building damaged during a mainshock will exhibit a given damage state following one or more aftershocks. Thus, the framework provides a method for characterizing the risk associated with damage accumulation in the structure. The framework includes the following: (i) creation of a numerical model of the structure; (ii) characterization of building damage states; (iii) generation of a suite of mainshock–aftershocks; (iv) mainshock–aftershock analyses; and (v) development of aftershock fragility curves using probabilistic aftershock demand models, defined as a linear regression of aftershock demand–intensity pairs in a logarithmic space, and damage‐state prediction models. The framework is not limited to a specific structure type but requires numerical models defining structural response and linking structural response with damage. In the current study, non‐ductile RC frames (low‐rise, mid‐rise, and high‐rise) are selected as case studies for the application of the framework. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Megathrust earthquake sequences, comprising mainshocks and triggered aftershocks along the subduction interface and in the overriding crust, can impact multiple buildings and infrastructure in a city. The time between the mainshocks and aftershocks usually is too short to retrofit the structures; therefore, moderate‐size aftershocks can cause additional damage. To have a better understanding of the impact of aftershocks on city‐wide seismic risk assessment, a new simulation framework of spatiotemporal seismic hazard and risk assessment of future M9.0 sequences in the Cascadia subduction zone is developed. The simulation framework consists of an epidemic‐type aftershock sequence (ETAS) model, ground‐motion model, and state‐dependent seismic fragility model. The spatiotemporal ETAS model is modified to characterise aftershocks of large and anisotropic M9.0 mainshock ruptures. To account for damage accumulation of wood‐frame houses due to aftershocks in Victoria, British Columbia, Canada, state‐dependent fragility curves are implemented. The new simulation framework can be used for quasi‐real‐time aftershock hazard and risk assessments and city‐wide post‐event risk management.  相似文献   

5.
An active aftershock sequence, triggered by a large mainshock, can cause major destruction to urban cities. It is important to quantify the aftershock effects in terms of nonlinear responses of realistic structural models. For this purpose, this study investigates the aftershock effects on seismic fragility of conventional wood-frame houses in south-western British Columbia, Canada, using an extensive set of real mainshock-aftershock earthquake records. For inelastic seismic demand estimation, cloud analysis and incremental dynamic analysis are considered. A series of nonlinear dynamic analyses are carried out by considering different seismic input cases and different analysis approaches. The analysis results indicate that consideration of aftershocks leads to 5–20 % increase of the median inelastic seismic demand curves when a moderate degree of structural response is induced. The findings of this investigation facilitate the extension of the existing approaches for inelastic seismic demand estimation to incorporate the aftershock effects.  相似文献   

6.
This paper introduces and evaluates a methodology for the aftershock seismic assessment of buildings taking explicitly into account residual drift demands after the mainshock (i.e., postmainshock residual interstory drifts, RIDRo). The methodology is applied to a testbed four‐story steel moment‐resisting building designed with modern seismic design provisions when subjected to a set of near‐fault mainshock–aftershock seismic sequences that induce five levels of RIDRo. Once the postmainshock residual drift is induced to the building model, a postmainshock incremental dynamic analysis is performed under each aftershock to obtain its collapse capacity and its capacity associated to demolition (i.e., the capacity to reach or exceed a 2% residual drift). The effect of additional sources of stiffness and strength (i.e., interior gravity frames and slab contribution) and the polarity of the aftershocks are examined in this study. Results of this investigation show that the collapse potential under aftershocks strongly depends on the modeling approach (i.e., the aftershock collapse potential is modified when additional sources of lateral stiffness and strength are included in the analytical model). Furthermore, it is demonstrated that the aftershock capacity associated to demolition (i.e., the aftershock collapse capacity associated to a residual interstory drift that leads to an imminent demolition) is lower than that of the aftershock collapse capacity, which mean that this parameter should be a better measure of the building residual capacity against aftershocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
中国大陆中强地震余震序列的部分统计特征   总被引:23,自引:1,他引:22       下载免费PDF全文
依据1970年以来记录相对完整的294次50级以上地震序列资料,研究中国大陆中强地震余震序列统计特征,探讨序列类型、最大余震震级、强余震活动持续时间等与主震震级及主震断层性质之间的关系.中国大陆孤立型、主余型及多震型地震余震序列分别约占23%、59%及18%.其中走滑型、具有倾滑分量的走滑型、具有走滑分量的倾滑型及逆冲型分别占48%、24%、17%及11%. 余震序列1年内最大余震震级与主震震级正相关,但主震震级较低时相对离散,孤立型序列离散程度较高,主余型及多震型序列线性相关性较好.绝大多数序列最大余震均发生在震后200天内,少数具有晚期强余震的序列主要属主余型序列,孤立型及多震型序列通常没有晚期强余震发生.68%的序列1年内最大余震发生在震后10天内,77%发生在震后30天之内,95%发生在震后120天之内.序列最大余震发生时间及5、6级强余震活动持续时间与序列类型及主震震级大小有关,多震型序列最大余震发生最快,孤立型次之、主余型最长.若仅就主余型序列而言,当主震震级较高时最大余震与主震间时间间隔相对较短,主震震级较低时最大余震与主震间时间间隔相对较长.  相似文献   

8.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

9.
针对九寨沟MS7.0地震之后不同时间段的余震序列目录,利用推定最大余震震级,给出了实际最大余震震级的估计值。结果表明,推定最大余震震级随主震后时间尺度的延长而趋于稳定,且该值与实际发生的最大余震的震级一致。需要强调的是,就九寨沟地震序列而言,当余震数据较为完备时,采用主震后较短时间段内(1~2天)的余震目录就可以较准确地估算出主震区域内可能发生的最大余震震级。实际上,主震后12h(0.5天)的余震数据已完全可以给出最大余震震级的有效下限。此外,计算中我们采用了里氏震级ML和面波震级MS的余震目录,结果显示,2种震级类型目录的估算结果完全一致,表明利用推定最大余震震级估算实际最大余震震级的方法不受震级类型的影响。据此,该最大余震震级快速评估方法可进一步推广应用于我国大陆地区中强震后强余震灾害分析评估中。目前的拟合技术也显示出随着测震技术的不断进步以及余震识别能力的提高,快速评估方法可以在主震后短时间(<1天)内准确地预测可能发生的最大余震震级。  相似文献   

10.
仲秋  史保平 《地震学报》2012,34(4):494-508
1976年7月28日唐山MS7.8大地震对唐山及其周边地区造成了重大的人员伤亡和财产损失. 主震之后约15小时滦县又发生了MS7.1地震; 同年11月15日宁河也发生了MS6.9地震. 唐山MS7.8主震后的余震一直持续至今,使该区域至今保持了与主震前相比具有较高的地震活动性.如何估计余震的持续时间,并进一步将余震从主震目录中去除,一直是地震学中所关注的问题.该文通过对数线性回归和理论计算,从不同角度求取并讨论了1976年唐山MS7.8大地震的余震持续时间.结果表明,由对数线性回归计算得到的余震持续时间约为80 a.而基于Dieterich的余震触发理论所得到的余震持续时间则与区域剪应力变化率有关.区域剪应力变化率可有几种不同方法求得: ① 根据剪应力变化率和静态应力降Delta;tau;e及地震回复周期tr之间的关系求取应力变化率,该方法所得到的余震持续时间约为70——100 a;② Ziv和Rubin对Dieterich的方法进行了修正,给出了通过远场加载速率和断层宽度求取应力变化率, 该方法得到的余震持续时间约为80 a;③ 由背景场地震活动性求取远场剪应力速率, 可以得到该地区二维分布式的余震持续时间,此方法得到的研究区域内余震持续时间为130——160 a.综上,唐山地区余震持续时间约为70——140 a,据此, 该地区现今所发生的地震仍为MS7.8唐山地震所触发的余震.   相似文献   

11.
A large mainshock may trigger numerous aftershocks within a short period, and large aftershocks have the potential to cause additional cumulative damage to structures. This paper investigates the effects and potential of aftershocks on the accumulated damage of concrete gravity dams. For that purpose, 30 as-recorded mainshock–aftershock seismic sequences are considered in this study, and a typical two-dimensional gravity dam model subjected to the selected as-recorded seismic sequences is modeled. A Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is selected for the concrete material. This model is used to evaluate the nonlinear dynamic response and the seismic damage process of Koyna dam under mainshock–aftershock seismic sequences. According to the characteristics of the cracking damage development, the local and global damage indices are both established to study the influence of strong aftershocks on the cumulative damage of concrete gravity dams. From the results of this investigation, it is found that the as-recorded sequences of ground motions have a significant effect on the accumulated damage and on the design of concrete gravity dams.  相似文献   

12.
This paper presents a proposed method of aftershock probabilistic seismic hazard analysis (APSHA) similar to conventional ‘mainshock’ PSHA in that it estimates the likelihoods of ground motion intensity (in terms of peak ground accelerations, spectral accelerations or other ground motion intensity measures) due to aftershocks following a mainshock occurrence. This proposed methodology differs from the conventional mainshock PSHA in that mainshock occurrence rates remain constant for a conventional (homogeneous Poisson) earthquake occurrence model, whereas aftershock occurrence rates decrease with increased elapsed time from the initial occurrence of the mainshock. In addition, the aftershock ground motion hazard at a site depends on the magnitude and location of the causative mainshock, and the location of aftershocks is limited to an aftershock zone, which is also dependent on the location and magnitude of the initial mainshock. APSHA is useful for post‐earthquake safety evaluation where there is a need to quantify the rates of occurrence of ground motions caused by aftershocks following the initial rupture. This knowledge will permit, for example, more informed decisions to be made for building tagging and entry of damaged buildings for rescue, repair or normal occupancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The back‐to‐back application of mainshock records as aftershock is often considered in conducting aftershock incremental dynamic analysis. In such an approach, the characteristics of mainshock records are considered to be similar to those of major aftershock records within the same mainshock–aftershock sequences. The underlying assumption is that the characteristics of selected mainshocks, other than those used for record selection, are not significant in the assessment of structural responses. A case study is set up to investigate the effects of aftershock record selection on the collapse vulnerability assessment. The numerical results for a specific wood‐frame structure indicate that the aftershock fragility can be affected by the aftershock record characteristics, particularly response spectral shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
汶川8.0级地震序列及相关问题讨论   总被引:13,自引:0,他引:13  
蒋海昆  黎明晓  吴琼  宋金 《地震地质》2008,30(3):746-758
汶川8.0级地震序列具有明显的分段特性,较强余震分布于茂县、绵竹以南及平武以北。主破裂过程在中南段以逆冲为主,序列逐渐衰减,呈主余型的序列衰减特征;北段是汶川地震破裂过程的终止区域,主破裂过程在该区域以走滑为主,形成多震型的序列特征,也成为汶川序列较大余震的主体活动区域。序列较强余震活动明显受引潮力调制,大多数较强余震发生在固体潮大、小潮时段,并且16时前后是较强余震的优势发震时段。序列衰减系数p值随时间增加而逐渐增大,最终基本稳定在1附近变化。结合以往的研究,对序列类型及最大强余震震级、强余震活动持续时间等进行了初步讨论。初步的统计结果还显示,8级左右强震序列中主震与最大余震之间的震级差正比于主震破裂尺度,这意味着当震级大体接近时,较大的破裂尺度与较为充分的能量释放相对应  相似文献   

15.
Missing early aftershocks following relatively large or moderate earthquakes can cause significant bias in the analysis of seismic catalogs. In this paper, we systematically address the aftershock missing problem for five earthquake sequences associated with moderate-size events that occurred inland Japan, by using a stochastic replenishing method. The method is based on the notion that if a point process (e.g., earthquake sequence) with time-independent marks (e.g., magnitudes) is completely observed, it can be transformed into a homogeneous Poisson process by a bi-scale empirical transformation. We use the Japan Meteorological Agency (JMA) earthquake catalog to select the aftershock data and replenish the missing early events using the later complete part of each aftershock sequence. The time windows for each sequence span from 6 months before the mainshock to three months after. The semi-automatic spatial selection uses a clustering method for the epicentral selection of earthquakes. The results obtained for the original JMA catalog and replenished datasets are compared to get insight into the biases that the missing early aftershocks may cause on the Omori-Utsu law parameters’ estimation, characterizing the aftershock decay with time from the mainshock. We have also compared the Omori-Utsu law parameter estimates for two datasets following the same mainshock; the first dataset is the replenished sequence, while the second dataset has been obtained by waveform-based analysis to detect early aftershocks that are not recorded in the JMA catalog. Our results demonstrate that the Omori-Utsu law parameters estimated for the replenished datasets are robust with respect to the threshold magnitude used for the analyzed datasets. Even when using aftershock time windows as short as three days, the replenished datasets provide stable Omori-Utsu law parameter estimations. The p-values for all the analyzed sequences are about 1.1 and c-values are significantly smaller compared to those of original datasets. Our findings prove that the replenishment method is a fast, reliable approach to address the missing aftershock problem.  相似文献   

16.
17.
Calculating the limit state (LS) exceedance probability for a structure considering the main seismic event and the triggered aftershocks (AS) is complicated both by the time‐dependent rate of aftershock occurrence and also by the cumulative damage caused by the sequence of events. Taking advantage of a methodology developed previously by the authors for post‐mainshock (MS) risk assessment, the LS probability due to a sequence of mainshock and the triggered aftershocks is calculated for a given aftershock forecasting time window. The proposed formulation takes into account both the time‐dependent rate of aftershock occurrence and also the damage accumulation due to the triggered aftershocks. It is demonstrated that an existing reinforced concrete moment‐resisting frame with infills subjected to the main event and the triggered sequence exceeds the near‐collapse LS. On the other hand, the structure does not reach the onset of near‐collapse LS when the effect of triggered aftershocks is not considered. It is shown, based on simplifying assumptions, that the derived formulation yields asymptotically to the same Poisson‐type functional form used when the cumulative damage is not being considered. This leads to a range of approximate solutions by substituting the fragilities calculated for intact, MS‐damaged, and MS‐plus‐one‐AS‐damaged structures in the asymptotic simplified formulation. The latter two approximate solutions provide good agreement with the derived formulation. Even when the fragility of intact structure is employed, the approximate solution (considering only the time‐dependent rate of aftershock occurrence) leads to higher risk estimates compared with those obtained based on only the mainshock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
According to the current seismic codes, structures are designed to resist the first damaging earthquake during their service life. However, after a strong main shock, a structure may still face damaging aftershocks. The main shock‐aftershock sequence may result in major damage and eventually the collapse of a structure. Current studies on seismic hazard mainly focus on the modeling and simulation of main shocks. This paper proposes a 3‐step procedure to generate main shock‐aftershock sequences of pairs of horizontal components of a ground motion at a site of interest. The first step generates ground motions for the main shock using either a source‐based or site‐based model. The second step generates sequences of aftershocks' magnitudes, locations, and times of occurrence using either a fault‐based or seismicity‐based model. The third step simulates pairs of ground motion components using a new empirical model proposed in this paper. We develop prediction equations for the controlling parameters of a ground motion model, where the predictors are the site condition and the aftershock characteristics from the second step. The coefficients in the prediction equations and the correlation between the model parameters (of the 2 horizontal components of 1 record and of several records in 1 sequence) are estimated using a database of aftershock accelerograms. A backward stepwise deletion method is used to simplify the initial candidate prediction equations and avoid overfitting the data. The procedure, based on easily identifiable engineering parameters, is a useful tool to incorporate effects of aftershocks into seismic analysis and design.  相似文献   

19.
Operative seismic aftershock risk forecasting can be particularly useful for rapid decision‐making in the presence of an ongoing sequence. In such a context, limit state first‐excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance‐based framework for adaptive aftershock risk assessment in the immediate post‐mainshock environment. A time‐dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event‐dependent fragility curves as a function of the first‐mode spectral acceleration for a prescribed limit state is calculated by employing back‐to‐back nonlinear dynamic analyses. An epidemic‐type aftershock sequence model is employed for estimating the spatio‐temporal evolution of aftershocks. The event‐dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic‐type aftershock sequence aftershock hazard. The daily probability of limit state first‐excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the number of aftershocks. As a numerical example, daily aftershock risk is calculated for the L'Aquila 2009 aftershock sequence (central Italy). A representative three‐story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first‐excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock‐damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post‐earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号