首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Çatallar Basin is one of the Miocene basins located in the southern part of the Bey Da?lar? Massif (SW Turkey). This basin has been reinvestigated and new stratigraphic and sedimentological data are now presented. The Çatallar Basin lies in paraconformity on the Bey Da?lar? carbonate platform of Late Cretaceous to Palaeogene age. It consists of an impersistent, shallow-marine carbonate base (Karabay?r formation, Late Oligocene to Early Burdigalian) followed by an onlapping detrital sequence including the Akçay and Ba?beleni formations (Langhian to Serravallian). The Akçay formation mainly contains turbidites in which several debris-flows and olistostromes are intercalated. The lowest debris flows derive from the local carbonate platforms of Cretaceous and Palaeogene age. Higher, the debris flows and olistostromes contain large carbonate blocks deriving from nearby sources (Bey Da?lar? platform carbonates), whereas the accompanying pebbles originate from the allochthonous ophiolitic units located farther to the north (Lycian Nappes) or to the east (Antalya Nappes). The origin of these ophiolitic detritus is a matter of debate. The new data obtained in this study favour a northern origin.  相似文献   

2.
More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006–2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.  相似文献   

3.
Within the Ötztal Complex (ÖC), migmatites are the only geological evidence of the pre-Variscan metamorphic evolution, which led to the occurrence of partial anatexis in different areas of the complex. We investigated migmatites from three localities in the ÖC, the Winnebach migmatite in the central part and the Verpeil- and Nauderer Gaisloch migmatite in the western part. We determined metamorphic stages using textural relations and electron microprobe analyses. Furthermore, chemical microprobe ages of monazites were obtained in order to associate the inferred stages of mineral growth to metamorphic events. All three migmatites show evidence for a polymetamorphic evolution (pre-Variscan, Variscan) and only the Winnebach migmatite shows evidence for a P-accentuated Eo-Alpine metamorphic overprint in the central ÖC. The P-T data range from 670–750 °C and < 2.8 kbar for the pre-Variscan event, 550–650 °C and 4–7 kbar for the Variscan event and 430–490 °C and ca. 8.5 kbar for the P-accentuated Eo-Alpine metamorphic overprint. U-Th-Pb electron microprobe dating of monazites from the leucosomes from all three migmatites provides an average age of 441 ± 18 Ma, thus indicating a pervasive Ordovician-Silurian metamorphic event in the ÖC.  相似文献   

4.
U–Pb SHRIMP analyses of zircons from various lithologies and ore bodies of the Felbertal scheelite deposit (western and eastern ore field) and neighbouring areas allow the reconstruction of the pre-Alpine magmatic and metamorphic processes responsible for the tungsten mineralization. The ore deposit belongs to the Magmatic Rock Formation, which is tectonically squeezed between the Habach Phyllite Formation and the Basal Schist Formation (all members of the Habach Group). In both the eastern and western ore field, the pre-mineralization geological processes are marked by the emplacement of basalts (547±27?Ma). Ensialic back-arc extension provided pathways for gabbroic and pyroxenitic melts as well as normal "I-type" granitoids (minimum crystallization age of 529±18?Ma). The rock assemblage forms a magmatic arc on an approximately 2?Ga continental Gondwana (?) margin. Post-emplacement tectonism and metamorphism have converted the basalts to fine-grained amphibolites, the gabbroic and pyroxenitic rocks to coarse-grained amphibolites and hornblendites, and the granitoids to leucocratic orthogneisses, respectively. Tungsten mineralization is intimately related to small patches and dikes of differentiated granitoids in the eastern ore field and the K2 ore body in the western ore field. The granitic melts have supposedly been generated by ongoing differentiation of calcalkaline magmas. They cut the older lithologies and intruded along the same pathways as the earlier melts. Fluids have been carried up along a major line in the eastern ore field. They caused the formation of an elongate ore body with a scheelite-quartz stockwork zone (scheelite-bearing quartz veinlets and veins) and an overlying, likewise elongate, 900-m-long, scheelite-rich quartzite lens. In the western ore field, accompanying fluids produced the K2 ore body. In this ore body, an eruption breccia occurs above a mineralized quartzite. The breccia (younger than 529±18?Ma) contains mineralized quartzite clasts as well as barren fine-grained amphibolite clasts and leucocratic orthogneiss-clasts that are similar to the surrounding host rock equivalents. The quartzite, which represents the main mineralization stage of the K2 ore body, is unsuitable for dating. However, the scheelite-rich quartzite lens of the eastern ore field is probably coeval. This lens locally lies on top of a differentiated and strongly mineralized gneiss. The crystallization age of this gneiss is 529±17?Ma, and marks the peak of tungsten input in the eastern ore field. Small, differentiated granitic dikes, which cut both the K2 eruption breccia and the K2 quartzite in the western ore field, contain only minor scheelite and mark a decrease in mineralization at 519±14?Ma. Thus, a period between 530 and 520?Ma and a setting between magmatic arc and (ensialic) back-arc may properly explain the likely scenario for the primary tungsten input (stage-1 scheelite) by differentiated granitic melts of calcalkaline character. Surprisingly, a second stage-2 scheelite formation was induced in the western ore field by a Variscan granite intrusion (K1–K3 gneiss; 336±19?Ma), the emplacement time of which is pre-dated by a cross-cutting dacitic dike of 340±5?Ma. This mineralization, which occurs in small quartz veins and within a quartz aureole atop the intrusion as well as an even younger mineralization in shear zones (yellowish-fluorescent stage-2 scheelite porphyroblasts), is bracketed between 355?Ma (the upper age limit of the K1–K3 gneiss precursor) and 335?Ma (the lower age limit of the dacitic dike, which is stage-2 scheelite free). Supposedly, long-lasting Variscan (amphibolite facies) metamorphic conditions till 282±2?Ma extended the scheelite remobilization. They caused a further dispersion of scheelite and induced the growth of individual grains and of rims around older grains (bluish-fluorescent stage-3 scheelite). The Alpine metamorphism of lower amphibolite to upper greenschist facies conditions caused a further, minor scheelite remobilization, especially along some faults and quartz veins, including sparse, but large, whitish-bluish-fluorescent crystals (stage-4 scheelite).  相似文献   

5.
Abstract

The Zentralgneise in the Hohe Tauern (Penninic Zone, Eastern Alps, Austria) can be interpreted essentially as metamorphosed Late Paleozoic orogenic plutonites with original compositions mainly of granites, granodiorites and tonalites, rarely also of diorites, quartzdiorites, quartzmonzodiorites, quartzmonzonites and quartzsyenites. Most of the granitoids show attributes of “Cordilleran I-type granites” respectively “volcanic arc granites”.

Due to their similarity to subduction derived granitoids from present day active continental margins in the Circum-Pacific area, it is assumed, that the I-type granitoids of the Hohe Tauern reflect the influence of a Variscan destructive plate boundary.

Among the Zentralgneise also minor amounts of granites with features towards the S-type occur, which are more likely related to collision than to subduction.

Seen as a whole, the Late Paleozoic plutonism played probably part in a compressional continental margin and originated during a Variscan subduction-collision scenario, that occurred along the southern flank of Central European Hercynian fold belt.  相似文献   

6.
Geochronological and geochemical analyses were carried out in order to identify the pre-Variscan basement of the Tauern Window (eastern Alps). Maficultramafic rocks from the central part of the Tauern window have been studied by REE-analysis and U-Pb and Sm-Nd isotopic analyses on whole rock, zircons, garnets and sphene. U-Pb and Sm—Nd zircon dating define both magmatic Pan-African and Cambro-Ordovician events from 650 Ma to 486 Ma within the Alpine fold belt. This indicates a time span of 150 Ma for magmatic activities in the Tauern Window of the eastern Alps. The ages of 657 Ma (U-Pb zircon) and 644 (Sm—Nd zireon) obtained from an amphibolite are the oldest dates of the Eastern Alps; they may be related to the Pan-African orogeny, and imply an early cycle of magmatic intrusion before major activity started at around 500 Ma. Sm-Nd whole rock analyses of the Precambrian rocks do not define an isochron, reflecting heterogenities within the mantle source. The initial Nd values (+1.2 to +4.7) are very low, implying an enrichment of the magma source. The second main phase of magmatic activity (539 486 Ma) is characterized by the emplacement of mafic/ultramafic rock sequences. As no ophiolitic relies are observed in these domains, the Early Paleozoic magmatism was likely associated with extensional tectonics. Obtained ages of 301±3 and 314+4/-3 Ma point to a Variscan metamorphism. The first combined U-Pb zircon/Sm—Nd zircon data for an amphibolite from the Basal Amphibolite Formation (BAF) favoured the Sm-Nd zircon isochron age as a magmatic age, whereas the low initial Nd value point to an enriched magma source as well as to heterogenities within the magma source. The obtained ages suggest that parts of the pre-Variscan basement within the Alpine fold belt were formed during the Pan-Africa cycle. The detection of Pre-Variscan ages within the Alpine basement must reffect a complex history involving significant pre-Variscan activity.  相似文献   

7.
An Oligocene paleosurface (regolith) lies on top of the high-pressure metamorphic rocks of the Sesia–Lanzo Zone near Biella, NW Italy. Only the saprock, the lowermost part in a regolith profile, is preserved. No evidence for any paleosoil can be observed. Field observations indicate that the regolith developed through in situ mechanical fracturing of the rocks of the Sesia–Lanzo Zone in a continental environment. Density estimations of the regolith and the underlying rocks of the Sesia–Lanzo Zone confirm the field observations and imply that a relatively small amount of alteration minerals was formed. The main detected alteration phases are chlorite, various carbonates, quartz, clay minerals, Fe-oxides, and Fe-hydroxides. Chlorite differing in chemistry and crystallographic ordering demonstrates different stages of alteration. Oxygen and carbon isotopic composition of carbonates suggests temperatures higher than surface conditions. Illite and chlorite thermometry indicates temperatures related to the anchizone (~250–300°C). These data are considered as a robust indication of the re-burial of the regolith together with its substrate and its volcanic cover. The burial is closely related to the tilting of the preserved stratigraphic sequence formed by the rocks of the Sesia–Lanzo Zone, the regolith, and the rocks of the Biella Volcanic Suite (Lanza, in Schweiz Miner Petrogr MItt 57: 281–290, 1977; Lanza, in Geologishe Rundschau 68: 83–92, 1979). Furthermore, the burial is consistent with this sequence of subaerial rocks being very close to the intrusion depth of the Valle del Cervo Pluton at the time of its emplacement (4–7 km; Zanoni et al., in Rend Online SGI Note Brevi 1: 199–202, 2008; Zanoni et al., in Int Geol Rev 52: 1244–1267, 2010 and references therein).  相似文献   

8.
《International Geology Review》2012,54(11):1398-1416
ABSTRACT

The stratabound Tianhu iron deposit, with a reserve of 104 Mt at 42% Fe, is located in the eastern part of the Central Tianshan zone in the southern part of the Central Asian Orogenic Belt. The deposit hosts schist, quartzite, marble, amphibolite, and granitic gneiss belonging to the Tianhu Group. Laser ablation inductively coupled plasma mass spectrometry was used to perform zircon U–Pb geochronology, bulk-rock geochemistry, and in situ zircon Hf isotope analyses of the metavolcanic host rocks for constraining the timing and genesis of the Tianhu iron deposit. According to the newly determined age constraints of 452 ± 3 and 477 ± 4 Ma, the iron deposit was concluded to be Ordovician in age. Geochemistry and zircon Lu–Hf isotope analyses suggested that the host rocks of the deposit represent metamorphosed arc-type volcanic rocks generated by the partial melting of a lower crustal source. Combined with geological and ore petrographic characteristics, the Tianhu iron deposit is interpreted to be of volcano–sedimentary origin with enrichment during subsequent metamorphism. The early Palaeozoic marks a critical iron mineralization epoch in the Eastern Tianshan area. The results also support the model of the Central Tianshan area as a volcanic-arc during the early Palaeozoic, associated with the subduction of the Northern Tianshan Ocean.  相似文献   

9.
10.
We employ garnet isopleth thermobarometry to derive the P–T conditions of Permian and Cretaceous metamorphism in the Wölz crystalline Complex of the Eastern Alps. The successive growth increments of two distinct growth zones of the garnet porphyroblasts from the Wölz Complex indicate garnet growth in the temperature interval of 540°C to 560°C at pressures of 400 to 500 MPa during the Permian and temperatures ranging from 550°C to 570°C at pressures in the range of 700 to 800 MPa during the Cretaceous Eo-Alpine event. Based on diffusion modelling of secondary compositional zoning within the outermost portion of the first garnet growth zone constraints on the timing of the Permian and the Eo-Alpine metamorphic events are derived. We infer that the rocks remained in a temperature interval between 570°C and 610°C over about 10 to 20 Ma during the Permian, whereas the high temperature stage of the Eo-Alpine event only lasted for about 0.2 Ma. Although peak metamorphic temperatures never exceeded 620°C, the prolonged thermal annealing during the Permian produced several 100 µm wide alteration halos in the garnet porphyroblasts and partially erased their thermobarometric memory. Short diffusion profiles which evolved around late stage cracks within the first garnet growth zone constrain the crack formation to have occurred during cooling below about 450°C after the Eo-Alpine event.  相似文献   

11.
In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid–rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.  相似文献   

12.
The classical concept of the nappe structure of the central Northern Calcareous Alps (NCA) is in contradiction with modern stratigraphic, structural, metamorphic and geochronological data. We first perform a palinspastic restoration for the time before Miocene lateral tectonic extrusion, which shows good continuity of structures, facies and diagenetic/metamorphic zones. We present a new nappe concept, in which the Tirolic unit practically takes the whole area of the central NCA and is divided into three subunits (nappes): Lower and Upper Tirolic subunit, separated by the Upper Jurassic Trattberg Thrust, and the metamorphic Ultra-Tirolic unit. The Hallstatt (Iuvavic) nappe(s) formed the highest unit, but were completely destroyed by erosion after nappe stacking. Remnants of the Hallstatt nappes are only represented by components of up to 1 km in size in Middle/Upper Jurassic radiolaritic wildflysch sediments ("Hallstatt Mélange" belonging to the Tirolic unit). Destruction of the continental margin started in Middle to Upper Jurassic time and prograded from the oceanic side towards the shelf. The original substratum of the external nappes (Bavaric units) of the NCA was largely the Austroalpine crystalline basement, of the internal nappes (Tirolic units) the weakly metamorphosed Palaeozoic sequences (Greywacke Zone and equivalents). Eocene movements caused limited internal deformation in the Tirolic unit.  相似文献   

13.
A high-quality 3D seismic volume from offshore Espírito Santo Basin (SE Brazil) is used to assess the importance of gravitational collapse to the formation of crestal faults above salt structures. A crestal fault system is imaged in detail using seismic attributes such as curvature and variance, which are later complemented by analyses of throw vs. distance (T-D) and throw vs. depth (T-Z). In the study area, crestal faults comprise closely spaced arrays and are bounded by large listric faults, herein called border faults. Two episodes of growth are identified in two opposite-dipping fault families separated by a transverse accommodation zone. Statistical analyses for eighty-four (84) faults show that fault spacing is < 250 m, with border faults showing the larger throw values. Fault throw varies between 8 ms and 80 ms two-way time for crestal faults, and 60–80 ms two-way time for border faults. Fault length varies between ∼410 m and 1750 m, with border faults ranging from 1250 m to 1750 m. This work shows that border faults accommodated most of the strain associated with salt growth and collapse. The growth history of crestal faults favours an isolated fault propagation model with fault segment linkage being associated with the lateral propagation of discrete fault segments. Importantly, two episodes of fault growth are identified as synchronous to two phases of seafloor erosion, rendering local unconformities as competent markers of fault reactivation at a local scale. This paper has crucial implications for the understanding of fault growth as a means to assess drilling risk and oil and gas migration on continental margins. As a corollary, this work demonstrates that: 1) a certain degree of spatial organisation occurs in crestal fault systems; 2) transverse accommodation zones can form regions in which fault propagation is enhanced and regional dips of faults change in 4D.  相似文献   

14.
《Geodinamica Acta》2000,13(5):335-343
During a detailed structural analysis of the cave systems of the Valle del Nosê (Como, Northern Italy), a systematic occurrence of thick (metric to decametric) slumped beds in several huge rooms and in other wide underground voids was observed. The systematic control, that these structures exert on the morphologies of the karst systems, suggests that slumped beds might play a major role in the genesis and evolution of large underground voids. In fact, thanks to their very high permeability, these beds seem to be able to act as the preferential way for water flowing in the very first phases of karst development, thus guiding cave development, while their mechanical properties, different from those of unslumped beds, make them prone to break down collapse, thus increasing the possibilities of the formation of huge rooms. On the basis of the observed field data, a genetic and evolutive model is therefore suggested to explain the origin of the largest voids in this area. This model has by now a strictly local effectiveness.  相似文献   

15.
Abstract

During a detailed structural analysis of the cave systems of the Valle del Nosê (Como, Northern Italy), a systematic occurrence of thick (metric to decametric) slumped beds in several huge rooms and in other wide underground voids was observed. The systematic control, that these structures exert on the morphologies of the karst systems, suggests that slumped beds might play a major role in the genesis and evolution of large underground voids. In fact, thanks to their very high permeability, these beds seem to be able to act as the preferential way for water flowing in the very first phases of karst development, thus guiding cave development, while their mechanical properties, different from those of unslumped beds, make them prone to break down collapse, thus increasing the possibilities of the formation of huge rooms. On the basis of the observed field data, a genetic and evolutive model is therefore suggested to explain the origin of the largest voids in this area. This model has by now a strictly local effectiveness. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

16.
A contact zone sandwiched between an arc and an oceanic crust was discovered in the Laohushan area in the present study. It consists of a series of north-dipping imbricated thrust sheets and is exposed on the surface as a narrow arcuate belt, which extends for about 30 km in an E-W direction and measures about 1-3 km wide. Lithologically, it can be divided into four subzones. Subzone 1 consists of meta-andesite and metasandstone; subzone 2, psammitic schists; subzone 3, psammitic and pelitic schists, quartz diorite and hornfelses; and subzone 4, metagabbro, epidote amphibolite and pelitic schists. The metamorphism has the following grading sequence: low greenschist facies in subzone 1 → high greenschist facies in subzone 2 →low amphibolite facies in subzone 3→ epidote amphibolite facies in subzone 4. Petrographic and geochemical evidence shows that rocks in subzones 1, 2 and 3 are arc rocks, whereas those of subzone 4 are oceanic crustal rocks. The metamorphic mineral assemblages and especially miner  相似文献   

17.
The Chañarcillo Basin is an Early Cretaceous extensional basin in northern Chile (27–29°S). The folding style of the syn-rift successions along the eastern side of the basin reveals an architecture consisting of a NNE-trending anticline “Tierra Amarilla Anticlinorium”, associated with the inversion of the Elisa de Bordos Fault. A set of balanced cross sections and palinspastic restorations across the basin show that a partially inverted “domino-style” half-graben as the structural framework is most appropriate for reproducing the deformation observed at the surface. This inverted system provides a 9–14 km shortening in the basin. The ages of the synorogenic deposits preserved next to the frontal limb of the “Tierra Amarilla Anticlinorium” suggest that basin inversion occurred close to the “K–T” boundary (“K–T” phase of Andean deformation). We propose that tectonic inversion is the fundamental deformation mechanism, and that it emphasizes the regional importance of inherent Mesozoic extensional systems in the evolution of the northern Chilean Andes.  相似文献   

18.
19.
Sedimentary rocks from the saline formation of the Lopare Basin were investigated. Sediments contain a moderate amount of immature to marginally mature algal organic matter deposited under slightly reducing to anoxic and slightly saline to hypersaline conditions. Almost all of the samples contain β-carotane in a relatively high quantity, and in some, it represents the most abundant compound in the total distribution of hydrocarbons. The objective of the study was to determine the conditions that are favourable to precursors of β-carotene and/or the preservation of the carotenoid hydrocarbon skeleton. Moreover, the dominant transformation pathways of β-carotene under different redox and salinity conditions, which lead to the formation of aromatic carotenoids were defined.  相似文献   

20.
In the Hallstatt salt mine (Austria), polyhalite rocks occur in 0.5–1 m thick and several metre long tectonic lenses within the protocataclasite to protomylonite matrix of the Alpine Haselgebirge Fm.. Thin section analysis of Hallstatt polyhalites reveals various fabric types similar to metamorphic rocks of crust-forming minerals, e.g. quartz and feldspar. Polyhalite microfabrics from Hallstatt include: (1) polyhalite mylonites, (2) metamorphic reaction fabrics, (3) vein-filling, fibrous polyhalite and (4) cavity-filling polyhalite. The polyhalite mylonites contain a wide range of shear fabrics commonly known in mylonitic quartzo–feldspathic shear zones within the ductile crust and developed from a more coarse-grained precursor rock. The mylonites are partly overprinted by recrystallised, statically grown polyhalite grains. Metamorphic reaction fabrics of polyhalite fibres between blödite (or astrakhanite) [Na2Mg(SO4)2.4H2O] and anhydrite have also been found. According to previous reports, blödite may occur primarily as nodules or intergrown with löweite. Reaction fabrics may have formed by exsolution, (re-)crystallisation, parallel growth or replacement. This fabric type was only found in one sample in relation with the decomposition of blödite at ca. 61 °C in the presence of halite or slightly above, testifying, therefore, a late stage prograde fabric significantly younger than the main polyhalite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号