首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The different segments of the tectonic boundary between external (European) and internal (Penninic) units in the Western Alps, the so-called Penninic Front (PF), formed at different times and according to different kinematic scenarios. During a first episode (Eocene), the PF corresponds to a transpressive suture zone between Penninic and European units. North- to NNW-trending stretching lineations, found along internal nappe contacts within the Penninic units, are related to this episode. This subduction zone was sealed by the Priabonian flysch of the Aiguilles d'Arves, a detrital trench formation that formed during the final stages of subduction. During a second episode, starting in mid-Oligocene times, the PF, imaged along the ECORS-CROP profile, acted as a WNW-directed thrust. This thrust, the Roselend Thrust (RT), only partially coincides with the PF. South of Moûtiers, the RT propagates into the Dauphinois units, carrying the former Eocene PF (including the Priabonian flysch) passively in its hangingwall. South of the Pelvoux massif the RT finds its continuation along the "Briançonnais Front", an out-of-sequence thrust behind the Embrunais-Ubaye nappes. On a larger scale, our findings indicate oblique (sinistral) collision within the future Western Alps during the Eocene, followed by westward indentation of the Adriatic block.  相似文献   

2.
Spatial control for in situ dating of mineral phases in fine‐grained rocks is a significant challenge in geochronology, and the precision of microsampling is a crucial factor in obtaining accurate results. In this study, a new microsampling approach to Rb–Sr geochronology has been applied to greenschist facies mylonitic shear zones in the Mont Blanc‐Aiguille Rouges region of the western European Alps. Using a laser‐ablation system for microsampling by laser cutting followed by conventional TIMS Rb–Sr isotopic analysis of μg‐sized samples provides an improved workflow for texturally controlled, quasi in situ dating of mineral phases. The automated cutting process minimizes material loss and the risk of handling errors, while facilitating sampling of complex shapes of almost any size, a significant improvement over earlier microscope‐mounted microdrills. The new Rb–Sr white mica–calcite ages of between 27 and 30 Ma indicate Oligocene deformation in Alpine shear zones from two specific areas in the Mont Blanc‐Aiguilles Rouges region.  相似文献   

3.
Due to a lack of systematic observations, the intensity and volume of rock falls and rock avalanches in high mountain areas are still poorly known. Nevertheless, these phenomena could have burly consequences. To document present rock falls, a network of observers (guides, mountaineers, and hut wardens) was initiated in the Mont Blanc Massif in 2005 and became fully operational in 2007. This article presents data on the 66 rock falls (100 m3?≤?V?≤?50,000 m3) documented in 2007 (n?=?41) and 2008 (n?=?25). Most of the starting zones are located in warm permafrost areas, which are most sensitive to warming, and only four rock falls are clearly out of permafrost area. Different elements support permafrost degradation as one of the main triggering factors of present rock falls in high mountain areas.  相似文献   

4.
The northeastern portion of the Mont Blanc massif in western Switzerland is predominantly comprised of the granitic rocks of the Mont Blanc intrusive suite and the Mont Blanc basement gneisses. Within these metamorphic rocks are a variety of sub-economic Fe skarns. The mineral assemblages and fluid inclusions from these rocks have been used to derive age, pressure, temperature and fluid composition constraints for two Variscan events. Metamorphic hornblendes within the assemblages from the basement amphibolites and iron skarns have been dated using 40Ar/39Ar, and indicate that these metamorphic events have a minimum age of approximately 334 Ma. Garnet-hornblende-plagioclase thermobarometry and stable isotope data obtained from the basement amphibolites are consistent with metamorphic temperatures in the range 515 to 580 °C, and pressures ranging from 5 to 8 kbar. Garnet-hornblende-magnetite thermobarometry and fluid inclusion studies indicate that the iron skarns formed at slightly lower temperatures, ranging from 400 to 500 °C in the presence of saline fluids at formational pressures similar to those experienced by the basement amphibolites. Late Paleozoic minimum uplift rates and geothermal gradients calculated using these data and the presence of Ladinien ichnofossils are on the order of 0.32 mm/year and 20 °C/km respectively. These uplift rates and geothermal gradients differ from those obtained from the neighbouring Aiguilles Rouges massif and indicate that these two massifs experienced different metamorphic conditions during the Carboniferous and Permian periods. During the early to late Carboniferous period the relative depths of the two massifs were reversed with the Aiguilles Rouges being initially unroofed at a much greater rate than the Mont Blanc, but experiencing relatively slower uplift rates near the termination of the Variscan orogeny. Received: 23 April 1996 / Accepted: 27 August 1996  相似文献   

5.
Abstract The chemical evolution of garnets from pelitic rocks of probable Palaeozoic age corresponds to a complex metamorphic evolution of the host rocks.
Among the almandine-rich garnets (Alm60–80), two main types of evolution can be distinguished. Early Mn-rich garnets coexisting with kyanite may be replaced by plagioclase and then, during a late stage, by biotite and/or sillimanite. The second type of evolution corresponds to an overgrowth of Mn-poor late-stage garnet on older Mn-rich garnets which corresponds to a thermal peak with sillimanite-type of metamorphism. This new garnet may appear either as an overgrowth with a strong discontinuity, or as small, new euhedral garnet or as skeletal garnet.
This chemical evolution of garnet corresponds to an early collisional stage of metamorphism (of high pressure type with high Mn values) of probable Ordovician age followed by uplift and a thermal peak (low Mn values) in Devonian times.  相似文献   

6.
We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.  相似文献   

7.
The Morcles microgranite is located in the N–E termination of the Aiguilles Rouges massif (External Crystalline Massifs, Switzerland). It outcrops as dykes, a few meters to 150 m in thickness, intruding the Aiguilles Rouges polymetamorphic basement, and presents variation of texture from granophyric to rhyolitic. We present here for the first time, in situ U–Pb zircon dating of the Morcles microgranite/rhyolite based on laser-ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) data. Results indicate late Variscan emplacement ages at ~303 and ~309–312 Ma, a major Caledonian inherited component age at ~445–460 Ma, and secondary inherited ages ranging from Pan-African (550–1000 Ma) to Paleoproterozoic (2.3 Ga). Geochronological and geochemical data indicate that the Morcles microgranite/rhyolite shares a common origin with the higher (or “H”) facies of the neighbouring Vallorcine granitic intrusion. This close affinity is further corroborated by the geographical alignment of both intrusive bodies on either side of the Rhone Valley. The fine-grained texture of the microgranite groundmass and the rhyolite indicates a very rapid cooling rate and emplacement close to the surface, suggesting that the Morcles microgranite/rhyolite may constitute the shallow-level counterpart of the Vallorcine granite. The mineralogical assemblages observed in the Morcles microgranite/rhyolite support the idea of high-temperature melting conditions provided by underplating of mantle-derived magmas during the Carboniferous extension of the Variscan cordillera.  相似文献   

8.
Rock avalanches are common in the Mont Blanc massif, which is bordered by valleys with large resident and tourist populations and important highways. This paper combines historical data with detailed geomorphological mapping, stratigraphic observation, and absolute and relative dating, to interpret several deposits resulting from rock avalanching onto glaciers.Nineteen rock falls and rock avalanches are described, ranging in volume from 10,000 m3 to 10 × 106 m3. They occurred between 2500 BP and AD 2007 at six sites. The events at three sites (Miage and Drus Glaciers, and Tour des Grandes Jorasses) are characterised by short travel distances; those at Brenva, Triolet, and Frébouge Glaciers exhibit excessive travel distances.Interactions between rock avalanches and glaciers are of four types: (i) rock-avalanche triggering, where glacial and paraglacial controls include debuttressing of rockwalls due to glacier thinning and retreat, oversteepening of rock slopes by glacial erosion, and effects of glaciers on permafrost; (ii) rock-avalanche mobility, in which mobility and travel distance are modified by channelling of rock-avalanche debris by moraines and valleys, incorporation of ice and snow (often >50% for large events), and irregularities on the glacier surface; (iii) deposit sedimentology, where melting of incorporated ice transforms the final deposit by reducing its thickness typically to <5 m, and debris of variable thicknesses is juxtaposed in a hummocky deposit with chaotic piles of angular rock debris; and (iv) glacier dynamics where insulating debris deposited upon a glacier produces a debris-covered glacier of different dynamics, and high elevated scars can favour the formation of small glaciers.  相似文献   

9.
Metabasic rocks interbedded in amphibolite facies supracrustal gneisses outcrop around Lac Carnu in the Aiguilles Rouges massif (Western Alps). The cores of the thickest boudinaged lenses are made up of eclogitic amphibolites grading outwards into amphibolites. The common assemblage is unzoned garnet + symplectitic clinopyroxebe + hornblende + plagioclase. In a slightly amphibolitized sample, minimum P and T conditions of equilibrium between garnet and omphacite inclusions are 780°C and 11 Kb. A polymetamorphic pre-Alpine evolution of the massif is thus demonstrated. Eclogitic amphibolites show variations in major element composition similar to the Skaergaard evolution in the Al2O3 ? FeO + Fe2O3 ? MgO triangle. Variation diagrams in which Zr is taken as differentiation index also indicate magmatic trends for Mn, Ti, P, Ni, Co, Y, V and Cr, Ca, K, Na, Sr, Rb and Si were mobile during the evolution of the rocks. The igneous trend can be described by a quantitative model of fractional crystallization in which a noritic assemblage separated in the initial stage. This provides evidence of crustal P, T conditions of differentiation for the original materoal and in situ evolution for the eclogites. A second group of amphibolites shows banded structure and transitional terms with the surrounding gneisses. A volcano-sedimentary origin is suggested though the process cannot be modelled. The rocks may result from complex interactions of magnetic, metasomatic and sedimentary processes. It is concluded that Lac Cornu metabasites were originally continental tholeiites, though several geochemical criteria tend to indicate an oceanic origin. This casts some doubt on the validity of these criteria, when applied to metamorphic rocks.  相似文献   

10.
Energy-time release curves are calculated for Swedish and for Fennoscandian earthquakes, both curves exhibiting a sharp break around the year 1910. The similarity of this behaviour with world-wide energy release curves suggests that Fennoscandian earthquakes are related to the global tectonics, probably via plate motions on the border between the North Atlantic and the Eurasian continent.  相似文献   

11.
The tectonic evolution of the Mont Blanc range with regard to its cooling and exhumation history has been discussed and debated over many years and is still controversial. Recently, several low-temperature thermochronology studies have determined the cooling history of the massif in considerable detail and various tectonic models proposed to explain the young and fast exhumation signal established from these studies. Here we present detailed field data from the wider Mont Blanc area and assess possible exhumation processes in terms of these field constraints. Our observations indicate that none of the major faults or shear zones around the Mont Blanc massif (i.e. Mont Blanc shear zone, Mont Blanc back-thrust, Penninic thrust) was active in Late Neogene times and that young exhumation is therefore not controlled by movements along these structures. We demonstrate that the position of Mont Blanc in the bend of the western Alps plays an important role in its tectonic history and that simple 2D models are insufficient to explain its evolution. Interference between NW–SE compression and orogen-parallel extension along the Rhône-Simplon fault system resulted in a complex regional structural pattern, with strike-slip movements on both sides of the Mont Blanc massif. Young brittle faults are predominantly strike slip without significant vertical offset. The young (<2 Ma) rapid exhumation of Mont Blanc is more broadly distributed and cannot be directly linked to discrete faults bounding the massif. The mechanisms driving this recent accelerated exhumation must similarly be of broader scale.  相似文献   

12.
13.
 The use of hydrothermal simulation models to improve the prediction of water inflows in underground works during drilling is tested in the Mont Blanc tunnel, French and Italian Alps. The negative thermal anomaly that was observed during the drilling of this tunnel in 1960 is reproduced by long-term, transient hydrothermal simulations. Sensitivity analysis shows the great inertia of thermal phenomena at the massif scale. At the time of tunnel drilling, the massif had not reached thermal equilibrium. Therefore, a set of simulation scenarios, beginning at the end of the last glacial period, was designed to explain the anomaly encountered in the tunnel in 1960. The continuous cooling of alpine massifs due to infiltration of waters from the surface has occurred for 12,000 years and is expected to continue for about 100,000 years. Comparisons of water-discharge rates simulated in the tunnel with those observed indicate that this hydrothermal method is a useful tool for predicting water inflows in underground works. Received, May 1998 · Revised, March 1999 · Accepted, April 1999  相似文献   

14.
Foreland-propagating external thrust belts may be considered as essentially plane strain phenomena so that displacements can be correlated throughout their linked, three-dimensional fault geometry. This approach has been applied to part of the northwest external French-Swiss Alps, around the Mont Blanc basement massif. Imbricates of basement and cover sequences on the SW margin of this massif restore to a width in excess of 77 km with an implicit shortening of at least 67 km. These displacements can be correlated with those in the neighbouring Helvetic nappes by transferring movements, via lateral branch lines, onto the Mont Blanc thrust. By reappraising thrust geometries, the Helvetic/Ultrahelvetic nappe complex has been restored to a width of 114 km to the ESE of the Aiguilles Rouges basement massif. Displacements on the internal (SE) margin of the Mont Blanc massif, estimated by balanced sections and a restoration of the Ultrahelvetic klippen in the sub-alps, exceed 59 km. Thrust continuity, incorporating the restorations of nappes and imbricate geometries around the Mont Blanc massif, is illustrated on a crude, restored branch-line map which also serves as a preliminary palaeogeographic reconstruction. External thrust systems, to the east of the external Belledonne/Aiguilles Rouges massif, restore to a width of at least 140 km in the footwall to the Frontal Pennine thrust.  相似文献   

15.
Seventeen focal-mechanism solutions have been obtained for earthquakes occurring in the Hindukush region using P-wave first motion directions observed from short as well as long period records. These solutions have indicated a thrust type of faulting. Some of the solutions show small components of strike slip motions. The trend of nodal planes in these solutions was found to vary between northeast and southeast directions. The dip of the compressional axes rarely exceeds 25°. Orientation of tensional axes was found to be almost vertical in all cases. These findings together with the spatial distribution of earthquakes in the Hindukush region suggested that earthquakes were caused by down-dip extension within a sinking slab.  相似文献   

16.
Two contemporary earthquakes originating in the central Himalayan arc and its foredeep (Sikkim earthquake of 18.09.2011, Mw 6.9, h: 10–60 (?) km and Bihar-Nepal earthquake of 20.08.1988, Mw 6.8, h: 57 km) are commonly associated with transverse lineaments/faults traversing the region. Such lineaments/faults form active seismic blocks defining promontories for the advancing Indian Craton. These actually produce conjugate shear faulting pattern suggestive of pervasive crustal interplay deep inside the mountains. Focal mechanism solutions allow inferring that large part of the current convergence across the central Himalayan arc is accommodated by lateral slip. Similar slip also continues unabated in the densely populated foredeep for distances up to several tens of kilometers south of the Main Boundary Thrust (MBT).  相似文献   

17.
LiDAR技术在活动构造研究中的应用   总被引:10,自引:0,他引:10  
沿断裂带的大比例尺地貌填图是活动构造研究的重要基础。传统方法一般通过遥感、航片解译以及典型地点的实地测量进行详细填图。因此传统方法一般只能获得二维变形特征,或者局部的三维变形。激光雷达测量(Light Detection And Ranging-LiDAR)技术优势为对地貌的高精度、全方位、三维直接测量,可以为活动构造研究提供沿整条断裂带的高精度地貌高程基础数据。基于LiDAR数据的量化分析是未来活动构造研究的趋势。目前,美国、欧洲、日本以及我国台湾地区等均已经开展沿主要活动断裂带的大规模机载LiDAR测量。与传统方法相比,LiDAR技术在森林覆盖区和城区的活动断裂填图中具有巨大的优势,在沿断裂位错测量上也更精准,更有效。并且震前与震后LiDAR数据对比也是研究同震变形特征、探索断裂发震模式的重要手段。本文综述LiDAR技术在活动构造研究中的主要应用,介绍LiDAR技术在活动构造研究中的优势与前景。分析表明,激光雷达技术在活动构造研究中的应用势在必行,沿国内主要活动断裂带的机载LiDAR测量将成为未来国内活动断裂研究基础数据获取的重要手段。  相似文献   

18.
19.
Understanding the manner and degree to which topography in active mountain ranges reflects deformation of the Earth's surface remains a first order goal of tectonic geomorphology. A substantial body of research in the past decade demonstrates that incising channel systems play a central role in setting relationships among topographic relief, differential rock uplift rate, and climatically modulated erosional efficiency. This review provides an introduction to the analysis and interpretation of channel profiles in erosional mountain ranges. We show that existing data support theoretical expectations of positive, monotonic relationships between channel steepness index, a measure of channel gradient normalized for downstream increases in drainage area, and erosion rate at equilibrium, and that the transient response to perturbations away from equilibrium engenders specific spatial patterns in channel profiles that can be used to infer aspects of the forcing. These aspects of channel behavior lay the foundation for a series of case studies that we use to illustrate how focused, quantitative analysis of channel morphology can provide insight into the spatial and temporal dynamics of active deformation. Although the complexities of river response to climate, lithology, and uplift patterns mean that multiple interpretations of topographic data alone will always possible, we show that application of stream profile analysis can be a powerful reconnaissance tool with which to interrogate the rates and patterns of deformation in active mountain belts.  相似文献   

20.
新构造、活动构造与地震地质   总被引:3,自引:0,他引:3  
新构造、活动构造和地震地质研究都是开展地震危险性评价的重要基础性地质工作。在综述新构造、活动构造和地震地质的基本含义、相互联系与区别、主要工作内容及方法的基础上,简要回顾了国内外在相关研究领域的主要进展,提出了中国活动构造与地震地质工作中应注意的主要问题和对未来工作的几点建议。最后,重点介绍了青藏高原东南缘开展活动构造体系和玉树地区活动断裂与地震地质调查研究工作所取得的主要进展与成果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号