首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study is the first investigation of biodegradation of carbon disulphide (CS2) in soil that provides estimates of degradation rates and identifies intermediate degradation products and carbon isotope signatures of degradation. Microcosm studies were undertaken under anaerobic conditions using soil and groundwater recovered from CS2-contaminated sites. Proposed degradation mechanisms were validated using equilibrium speciation modelling of concentrations and carbon isotope ratios. A first-order degradation rate constant of 1.25 × 10?2 h?1 was obtained for biological degradation with soil. Carbonyl sulphide (COS) and hydrogen sulphide (H2S) were found to be intermediates of degradation, but did not accumulate in vials. A 13C/12C enrichment factor of ?7.5 ± 0.8 ‰ was obtained for degradation within microcosms with both soil and groundwater whereas a 13C/12C enrichment factor of ?23.0 ± 2.1 ‰ was obtained for degradation with site groundwater alone. It can be concluded that biological degradation of both CS2-contaminated soil and groundwater is likely to occur in the field suggesting that natural attenuation may be an appropriate remedial tool at some sites. The presence of biodegradation by-products including COS and H2S indicates that biodegradation of CS2 is occurring and stable carbon isotopes are a promising tool to quantify CS2 degradation.  相似文献   

2.
Plastics are polymeric materials, and their disposal is a great problem in today’s society. Large quantities of single-use plastics are used every minute throughout the world. Peroxidase enzymes play a significant role in the biodegradation of polymeric materials due to oxidoreductase capability. The objective is to determine which set of conditions optimize the production of peroxidase enzymes by Phanerochaete chrysosporium so as to degrade polymeric materials. The sequential order of parameters in terms of their relevant performance in the bioprocess was determined as urea > polyvinyl chloride > incubation time > polyethylene > veratryl alcohol > sucrose > ammonium sulfate > glucose > ferrous sulfate and polystyrene. Statistical analysis was performed by using analysis of variance which indicated the significance of model Plackett–Burman and components on the basis of F value and P value of 0.012678 < 0.05. The Fourier transform infrared spectroscopy of enzyme-treated polymer revealed structural changes at 1091, 1638 cm?1. A new peak appeared at wave number 1029 and represented the aromatic ether and phenolic group as compared to control. Biosynthesis of lignin peroxidase at optimized conditions has the potential for biodegradation of recalcitrant polymeric waste, due to its oxidoreductase capability for chemically inert material in nature like lignin and can be used for waste treatment on a large scale.  相似文献   

3.
Oil-based drilling cuttings comprise a large and hazardous waste stream generated by oil and gas wells drilling operations. Oil-based cuttings are muddy materials with high contents of salts and hydrocarbons. Composting strategies have shown to be effective in the biodegradation of petroleum hydrocarbons, and it offers numerous advantages in comparison with other bioremediation methods. In order to assess the effectiveness of drilling cuttings bioremediation by composting with food and garden wastes, an experiment was conducted in 60-L reactors for 151 days. Four treatments were carried out: only oil-based cuttings, two proportions (in a volume basis) of organic wastes to drilling cuttings (33 and 75 %) and only organic wastes (as a traditional composting reference), with pine-tree woodchips as bulking agent. High degradation percentages of total hydrocarbons (≈82 %), n-alkanes (≈96 %) and the 16 USEPA-listed polycyclic aromatic hydrocarbons (≈93 %) were reached in the treatment with 75 % of organic wastes, and applying 33 % of organic wastes was not more effective than not applying organic wastes for the drilling cuttings hydrocarbons biodegradation. Furthermore, in the treatment with 75 % of organic wastes, alkanes half-life and polycyclic aromatic hydrocarbons half-life were about 10 times and four times lower, respectively, than those in the treatment with 33 % of organic wastes. Possibly, lower hydrocarbons and salts initial concentrations (i.e., lower toxicity), higher microbial counts, adequate nutrient proportions and water content supported a high biological activity with a consequent elevated biodegradation rate in the treatment with 75 % of organic wastes.  相似文献   

4.
Polyhydroxyalkanoates (PHAs) are an important class of biodegradable polymers synthesized by a few bacteria under nutrient-limiting conditions. In this study, the lipase-catalysed degradation of PHA synthesized by Enterobacter sp. was monitored. For this, the lipase-encoding gene from Bacillus subtilis DI2 was PCR-amplified, cloned into a T vector system and sequenced. It was expressed in Escherichia coli DH5α cells, the recombinant enzyme was purified 24.25-fold, and its molecular weight was determined to be around 28 kDa. When PHA biodegradation studies were carried out with this enzyme, gel permeation chromatography showed 21.3 and 28.3 % molecular weight decrease and weight loss, respectively. Further, scanning electron micrographs revealed alterations in polymer surface morphology. Changes in molecular vibrations were noticed in the FTIR spectra. When the chemical shifts in NMR spectra were studied, a steep reduction in area under the peak at 1.57 ppm was observed. In the heating range of 30–930 °C employed during thermogravimetry analysis, the degraded sample showed a total of 45.82 % weight loss, as against 18.89 % for the native sample. The melting temperature (T m) of the polymer was also brought down from 126.22 to 118.18 °C, as inferred from differential scanning calorimetry. Lipase-catalysed chain scission reactions could thus be used to generate low molecular weight functional biopolymers with wide-ranging pharmaceutical applications, such as in sustained drug release.  相似文献   

5.
This study investigated the kinetics and degradation pathway of acebutolol, metoprolol and sotalol in a sulfate radical-based advanced oxidation process. The selected pharmaceuticals were β-blockers which have been used to treat cardiovascular diseases. Due to its frequent use, the presence of these pharmaceuticals in the environment has been regularly reported. In this study, sulfate radicals were generated using peroxymonosulfate with cobalt (II) as activator. At pH 7 and 25 °C, the second-order rate constant for the reaction between SO4 ·? with metoprolol, acebutolol and sotalol was (1.0 ± 0.1) × 1010, (2.0 ± 0.1) × 1010 and (3.0 ± 0.2) × 1010 M?1 s?1, respectively. Sixteen transformation by-products were identified from the selected β-blockers. These transformation by-products were mainly formed through the hydroxylation, aromatic ring-opening reaction and aliphatic chain oxidation. The decomposition of β-blockers by sulfate radicals was found to start from the formation of hydroxylated β-blockers followed by an aromatic ring-opening reaction. In general, this study showed that β-blockers reacted favorably with sulfate radicals, and various transformation by-products could be produced. The result from the ecotoxicity assessment showed that almost all of the transformation by-products were less toxic than its parent compound. Therefore, a sulfate radical-based advanced oxidation process could be an effective method for the treatment of β-blockers in water.  相似文献   

6.
Binary mixture of Variovorax sp. BS1 and Achromobacter denitrificans degraded >99 % of 300 mg l?1 of ortho-dimethyl phthalate (DMP) within 24 h of incubation at 30 °C. Rate of degradation of DMP followed the order: A. denitrificans > binary mixture > Variovorax sp. BS1. Transient intermediate metabolites were not detected using HPLC analyses at any time points using Variovorax sp. BS1 and binary mixture. However, using pure culture of A. denitrificans, monomethyl phthalate was accumulated during the course of DMP biodegradation which disappeared with time of incubation. Binary mixture of Variovorax sp. BS1 and A. denitrificans exhibited better efficiency in terms of biodegradation of DMP as compared to either individual bacterial strain. In addition, fluorescence in situ hybridization technique was used to estimate the population dynamics of Variovorax sp. BS1 in binary mixture. A. denitrificans in mixed culture were estimated by subtracting total number of cells of Variovorax sp. BS1 from the total counts of microbial cells using an epifluorescence microscope after staining with 4′,6-diamidino-2-phenylindole. Results obtained at mid-exponential growth phase suggested the abundance of both bacterial strains as primary degraders.  相似文献   

7.
The generation of huge amount of liquid waste known as palm oil mill effluent is a major problem in oil palm industry. Meanwhile, anaerobic biodegradation of such organic effluent at thermophilic condition is a promising treatment technology due to its high efficiency. However, storage and transportation of thermophilic mixed culture sludge are challenging due to constant biogas generation and heating requirement. Hence, drying of thermophilic sludge was conducted to obtain dormant thermophiles and thus enables easier handling. In this study, thermophilic sludge was dried using heat pump at 22 and 32 °C as well as hot air oven at 40, 50, 60, and 70 °C. Subsequently, quality of dried sludge was examined based on most probable number enumeration, chemical oxygen demand, and methane yield. Average drying rate was found to increase from 3.21 to 17.84 g H2O/m2 min as drying temperatures increases while average moisture diffusivity values ranges from 5.07 × 10?9 to 4.34 × 10?8 m2/s. Oven drying of thermophilic mixed culture resulted in highest chemical oxygen demand removal and lowest log reduction of anaerobes at 53.41% and 2.16, respectively, while heat pump drying resulted in the highest methane yield and lowest log reduction of methanogens at 53.4 ml CH4/g COD and 2.09, respectively. To conclude, heat pump at 22 °C was most suitable drying technique for thermophilic mixed culture as the original methane-producing capability was largely retained after drying, at a slightly lower yet still comparable chemical oxygen demand removal when palm oil mill effluent was treated with the rehydrated culture.  相似文献   

8.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   

9.
This study aims to attempt a treatment strategy based on fungi immobilized on silica-alginate (biocomposites) for removal of phenolic compounds in olive oil mill wastewater (OMW), OMW supplemented (OMWS) with phenolic compounds and water supplemented (WS) with phenolic compounds, thus decreasing its potential impact in the receiving waters. Active (alive) or inactive (death by sterilization) Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the OMW, OMWS and WS. The treatment of OMW, OMWS and WS by active and inactive biocomposites was performed throughout 28 days at 25 °C. The efficiency of treatment was evaluated by measuring the removal of targeted organic compounds, chemical oxygen demand (COD) and relative absorbance ratio along the time. Active P. sajor caju biocomposites were able to remove 64.6–88.4 % of phenolic compounds from OMW and OMWS and 91.8–97.5 % in water. Furthermore, in the case of OMW there was also a removal of 30.0–38.1 % of fatty acids, 68.7 % of the sterol and 35 % of COD. The silica–alginate–fungi biocomposites showed a high removal of phenolic compounds from OMW and water. Furthermore, in the application of biocomposites to the treatment of OMW it was observed also a decrease on the concentration of fatty acids and sterols as well as a reduction on the COD.  相似文献   

10.
Phenol biodegradation in an aerobic batch reactor was investigated using mixed two co-aggregating strains (Flavobacterium sp. and Acetobacter sp.). Response surface methodology by the Box–Behnken model was used to evaluate the optimal cell growth and phenol degradation conditions. The optimum temperature, pH value and inoculum size were found to be 33 °C, 6.06 and 13 %, respectively. In the conditions, phenol degradation rate and biomass were predicted to be 96.97 % and 410.78 mg/L within the range examined, respectively. Less toxic acetaldehyde, ethanol and acetic ether were identified as main intermediate products from the degraded samples using GC–MS. Substrate inhibition was calculated from experimental biomass growth and phenol degradation parameters using the Haldane equation. Kinetic parameters derived from nonlinear regression with correlation factors (R 2) were 0.9682 for phenol degradation and 0.9594 for biomass growth, respectively. The phenol concentration to avoid substrate inhibition was 278.17 mg/L.  相似文献   

11.
Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for temperatures of 25, 30, 35, and 40 °C and initial phenol concentrations of 400, 800, 1,000, and 1,500 ppm. The results show that the acclimatized activated sludge has a high capacity for the removal of phenol. From a 100-mL aqueous solution was removed 1,500 ppm of phenol after 80 h. Furthermore, maximum phenol removal was observed for an inoculation volume of 5 mL for three different phenol concentrations of 100, 400, and 800 ppm. The best pH was 7 for the biodegradation process, and the optimum temperature was 30 °C. It was further found that an increase in the phenol concentration increased its removal time. Moreover, the activated sludge could effectively remove about 99.9 % of phenol from a synthetic aqueous solution in a batch system.  相似文献   

12.
The effect of activated sludge acclimation on the biodegradation of toluene in the presence of a biodegradable non-aqueous phase liquid, di (2-ethylhexyl) phthalate (DEHP), in a two-phase partitioning bioreactor was characterized. The influence of the presence of DEHP, at a ratio of 0.1 % (volume ratio), and of the acclimation of activated sludge (AS) on the biodegradation of hydrophobic VOC was studied. AS was acclimated to both toluene and DEHP simultaneously. Using acclimated cells, 73 and 96 % improvement of the mean biodegradation rates was recorded for toluene and the organic solvent (DEHP), respectively, if compared to the values recorded in the absence of acclimation, during tests performed in Erlenmeyer flasks. Degradation rates were further improved by the use of acclimated AS in a reactor with a large head space; degradation yields for toluene and DEHP were above 99 and 89 %, respectively.  相似文献   

13.
Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days?1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.  相似文献   

14.
The accumulation of plastics in the environment is raising great concerns with respect to long-term environmental, economic and waste management problems. The aim of the present research was to investigate the biodegradability of starch blended polyvinyl chloride films in soil burial and controlled laboratory experiments using selective fungal isolates. Clear surface aberrations as color change and minor disintegration in polyvinyl chloride films were observed after 90 days and later confirmed through scanning electron microscopy. The fungal strains showing prominent growth and adherence on plastic films were isolated. One of the strains showing maximum activity was selected and identified as Phanerochaete chrysosporium PV1 by rDNA sequencing. Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses indicated considerable structural changes and transformation in films in terms of appearance of new peaks at 3,077 cm?1 (corresponding to alkenes) and decrease in intensity of peaks at 2,911 cm?1 (C–H stretching). It was supported with a significant decrease in the molecular weight of polymer film from 80,275 to 78,866 Da (treated) through Gel permeation chromatography in shake flask experiment. Moreover, the biodegradation of starch blended polyvinyl chloride films was confirmed through release of higher CO2 (7.85 g/l) compared to control (2.32 g/l) in respirometric method. So fungal strain P. chrysosporium PV1 has great potential for use in bioremediation of plastic waste.  相似文献   

15.
Phenol and its methylated derivatives, cresol isomers, are hazardous pollutants that are commonly present in various industrial effluents and known to have detrimental effect on aquatic life as well as human health, due to their toxic and carcinogenic nature. It is essential, therefore, to reduce the concentration of these contaminants in industrial effluent to acceptable levels prior to being discharged into the environment. Bacterial cells of the strain Pseudomonas putida, with excellent biodegradation capabilities and high tolerance of cresols, were extracted and immobilized in polyvinyl alcohol (PVA) gel for cresols biodegradation. The biodegradation was carried out at different operating conditions, in both batch and continuous modes, using a cylindrical spouted bed bioreactor. Factors affecting o-cresol and m-cresol degradation were studied in batch experiments, and the results showed that the immobilized bacteria could tolerate cresols concentration up to 200 mg/l. Moreover, the experiments indicated that the biodegradation rate was highly affected by the operating parameters such as pH and temperature, with optimum ranges of 6–8 for pH and 30–35 °C for temperature. However, the optimum conditions were different for each cresol isomer. The potential of P. putida in degrading binary and ternary mixtures of cresols was also examined in the continuous process and compared with single component biodegradation. The experimental results revealed that the biodegradation of o-cresol was highly inhibited by the presence of p-cresol and m-cresol.  相似文献   

16.
Bioremediation is an effective measure in dealing with such contamination, particularly those from petroleum hydrocarbon sources. The effect of soil amendments on diesel fuel degradation in soil was studied. Diesel fuel was introduced into the soil at the concentration of 5 % (w/w) and mixed with three different organic wastes tea leaf, soy cake, and potato skin, for a period of 3 months. Within 84 days, 35 % oil loss was recorded in the unamended polluted soil while 88, 81 and 75 % oil loss were recorded in the soil amended with soy cake, potato skin and tea leaf, respectively. Diesel fuel utilizing bacteria counts were significantly high in all organic wastes amended treatments, ranging from 111 × 106 to 152 × 106 colony forming unit/gram of soil, as compared to the unamended control soil which gave 31 × 106 CFU/g. The diesel fuel utilizing bacteria isolated from the oil-contaminated soil belongs to Bacillus licheniformis, Ochrobactrum tritici and Staphylococcus sp. Oil-polluted soil amended with soy cake recorded the highest oil biodegradation with a net loss of 53 %, as compared to the other treatments. Dehydrogenase enzyme activity, which was assessed by 2,3,5-triphenyltetrazolium chloride technique, correlated significantly with the total petroleum hydrocarbons degradation and accumulation of CO2. First-order kinetic model revealed that soy cake was the best of the three organic wastes used, with biodegradation rate constant of 0.148 day?1 and half life of 4.68 days. The results showed there is potential for soy cake, potato skin and tea leaf to enhance biodegradation of diesel in oil-contaminated soil.  相似文献   

17.
A double-chambered biocathode microbial fuel cell with carbon felt employed as electrodes was developed for wastewater treatment and bioelectricity generation simultaneously. The system was operated in fed-batch mode for over eight batches. The effect of circuit connections on organic and nitrate reduction was investigated. The maximum power density recorded was 21.97 mW/m2 at current density of 88.57 mA/m2. The Coulombic efficiency and internal resistance of the system were 5% and 100 Ω. Up to 89.9 ± 5.9% of chemical oxygen demand reduction efficiency achieved with an influent of 1123 ± 28 mg/L. There was no significant difference in the chemical oxygen demand reduction when system operated in either open or closed circuit. This study clearly showed that higher nitrate reduction efficiency obtained in closed circuit (74.7 ± 7.0%) due to bio-electrochemical denitrification compared to only 41.7% in the open circuit. The result also successfully demonstrated nitrate as terminal electron acceptor for the cathodic nitrate reduction.  相似文献   

18.
Immobilized form of Serratia marcescens strain AQ07 was experimented for cyanide biodegradation. Cyanide degradation (200 ppm) was achieved after 24-h incubation. Three parameters were optimized which included gellan gum concentration, beads size, and number of beads. In accordance with one-factor-at-a-time method, cyanide removal was optimum at 0.6% w/v gellan gum gel, 0.3-cm-diameter beads, and 50 beads number. It was able to withstand cyanide toxicity of 800 ppm, which makes it very suitable candidate in cyanide remediation. Beads reusability indicates one-cycle ability. The first cycle removed 96.3%, while the second removed 78.5%. Effects of heavy metals at 1.0 ppm demonstrated that mercury has a considerable effect on bacteria, inhibiting degradation to 61.6%, while other heavy metals have less effect, removing 97–98%. Maximum specific degradation rate of 0.9997 h?1 was observed at 200 ppm cyanide concentration. Gellan gum was used as the encapsulation matrix. ?-picoline-barbituric acid spectrophotometric analytical method was used to optimize the condition in buffer medium integrated with potassium cyanide via one-factor-at-a-time and response surface method. The range of cyanide concentrations used in this research, specific biodegradation rate was obtained to model the substrate inhibition kinetics. This rate fits to the kinetic models of Teisser, Aiba and Yano, which are utilized to elucidate substrate inhibition on degradation. One-factor-at-a-time approach parameters were adopted because it removes more cyanide compared to response surface methodology modules. The predicted biokinetic constant from this model suggests suitability of the bacteria for use in cyanide treatment of industrial waste effluents.  相似文献   

19.
A denitrifying biocathode in a microbial fuel cell was developed to investigate the replacement of the costly Pt-coated abiotic cathodes for electricity generation. The denitrifying biocathode was sandwiched between the dual-anode systems. The study investigated the performance for simultaneous treatment of wastewater on the anode, biological denitrification on the cathode and the potential recovery of electrical energy. Autotrophic biofilms performed denitrification on the cathode using supplied electrons by the biodegradation of organics on the anode. Graphite granules were used as electrodes for biofilm attachment, and nafion membranes were used as separators between electrodes. The system achieved a volumetric power of 7 ± 0.4 W m?3 net cathodic compartment (NCC) with the simultaneous removal of 229.5 ± 18 mg L?1 COD on anode and 88.9 g m?3 NCC day?1 nitrogen on cathode, respectively. The columbic efficiency for cathodic and anodic reactions was 98.9 ± 0.57 and 23.54 ± 0.87 %, respectively. This is a combined study for domestic wastewater treatment and biological denitrification in a compact MFC reactor. Further optimization of the system is desired to improve its performance and applicability.  相似文献   

20.
Biotreatment of methylparathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate) was studied in aqueous mineral salts medium containing fungal culture to demonstrate the potential of the pure culture (monoculture) of Fusarium sp in degrading high concentration of methylparathion. A statistical Box–Behnken design of experiments was performed to evaluate the effects of individual operating variables and their interactions on the methylparathion removal with initial concentration of 1,000 mg/L as fixed input parameter. A full factorial Box–Behnken design of experiments was used to construct response surfaces with the removal, the extent of methylparathion biodegradation, removal of chemical oxygen demand and total organic carbon, and the specific growth rate as responses. The temperature (X 1), pH (X 2), reaction time (X 3) and agitation (X 4) were used as design variables. The result was shown that experimental data fitted with the polynomial model. Analysis of variance showed a high coefficient of determination value of 0.99. The maximum biodegradation of methylparathion in terms of the methylparathion removal (Y 1), chemical oxygen demand removal (Y 2) and total organic carbon removal (Y 3) were found to be 92, 79.2 and 57.2 % respectively. The maximum growth in terms of dry biomass (Y 4) was 150 mg/L. The maximum biodegradation corresponds to the combination of following factors of middle level of temperature (X 1 = 30 °C), pH (X 2 = 6.5), agitation (X 4 = 120 rpm) and the highest level of reaction time (X 3 = 144 h). The removal efficiency of methylparathion biodegradation was achieved 92 %. It was observed that optimum biotreatment of methylparathion can be successfully predicted by response surface methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号