首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxylamine, a very important intermediate in nitrification, has a direct relationship with the production of nitrous oxide in biological wastewater treatment processes. The spectrophotometric method taking ferric ammonium sulfate and 1, 10-phenanthroline as the oxidant and the chromogenic agent, respectively, was used to determine the concentration of hydroxylamine in biological wastewater treatment processes. The impacts of nitrite, nitrate, orthophosphate, calcium ion and trace elements on the method were examined. The results indicated that the spectrophotometric method can be used for the determination of hydroxylamine in biological wastewater treatment processes. The correlation was significant in the range of 0.02–1.00 mg N/L (y = 1.5078x ? 0.0132, R 2 = 0.9991), and the range varied to 0.05–1.00 mg N/L when nitrite and orthophosphate presented. Nitrate, calcium ion and trace elements did not interfere with the determination of hydroxylamine nitrogen. When the concentrations of nitrite nitrogen in the samples were lower than 15.00 mg/L, nitrite had a minor interference on the method. The impacts of orthophosphate on the method were complex. When the concentrations of hydroxylamine nitrogen were higher than 0.10 mg/L, the interference of orthophosphate on the method can be ignored. However, when the concentrations of hydroxylamine nitrogen in the samples were lower than 0.10 mg/L, orthophosphate had significant impacts on the determination, and a numerical method proposed can eliminate the interference of orthophosphate. The spectrophotometric method can determine the concentration of hydroxylamine in biological wastewater treatment processes quickly and conveniently and was helpful to understand the function of NH2OH in N2O production in biological wastewater treatment processes.  相似文献   

2.
Microbial activity has the potential to alter all cultural heritage in mining and metallurgy, due to metal mobilization by leaching. This communication shows the consequences of the bioleaching ability of two natural enrichments on copper slag samples from a historic ore smelting site in Sangerhausen (Mansfeld, Südharz, Saxony-Anhalt, Germany). Enrichment cultures gained from mine drainage were dominated by either the iron and sulfur-oxidizing Acidithiobacillus ferrivorans, or by the iron-oxidizing Leptospirillum. During 35 days of bioleaching in media containing copper slag pulp, inoculated with these enrichments, the change in pH and solubilized metal concentrations of the systems were monitored. Both bacterial strains were completely different from each other in their pattern of pH variation and rates of metal solubilization. The maximum removal of Cu (1725 mg/l) and Zn (715 mg/l) from copper slag substrate was achieved with enrichment culture of A. ferrivorans SCUT-1. However, maximum Mn (207 mg/l), Pb (86 mg/l), and Ni (75 mg/l) removal was observed with enrichment culture of Leptospirillum strain YQP-1. Implications for metal mobilization along with alteration of artifacts from not only historic mining areas but also aspects of decontamination and remediation are discussed.  相似文献   

3.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

4.
The objective of this study was to evaluate the performance of anaerobic digestion (AD) as an eco-friendly technology for coffee wastewater (CWW) management. First, we have characterized the CWW and found that it is suitable for microbial degradation with pH adjustment. Then, we designed a simple anaerobic batch reactor (ABR) and evaluated its potential for energy yield and efficiency to remove pollutants. The experiment was carried out by operating the anaerobic digestion (AD) for 70 days. The ABR was found to be efficient for the removal of organic load (90 %), nutrients (82 %) and suspended solids (95 %) from coffee processing waste. The increased removal efficiency of pollutants was dependent on the hydraulic retention time of the system. We also estimated that the coffee waste has a potential to produce a theoretical energy yield of 4–10 million KJ/day and an organic fertilizer (digestate) of 18.8–25.2 kg VSS/day. As a result, the AD would be a more sensible consideration as an eco-friendly treatment option for the coffee waste. The use of AD for CWW treatment not only reduces emission of greenhouse gases to the environment but also circumvents the rising demand for fuel wood and charcoal that causes a severe deforestation in the coffee growing regions of the world.  相似文献   

5.
6.
The removal of volatile organic compounds from biological treatment processes occurs through several mechanisms. These include biodegradation, adsorption onto solids, and air stripping or volatilization to the atmosphere. Volatilization results in fugitive emissions to the atmosphere, which is largely uncontrolled. Recent regulations have called for increased evaluation and control of inadvertent volatile organic compounds emissions from treatment processes. The use oxygen as a parallel volatile compound is extremely useful for prediction of volatile organic compounds removal by air stripping. In this study, the simultaneous biodegradation and air stripping of volatile organic compounds, based on steady state mass balance are examined and a general approach to estimating the dominant removal mechanism is developed. A Monte Carlo simulation technique was used to estimate air stripping over a wide range of operating conditions. Several volatile organic compounds were selected for this study. The results showed the values drived from the model correspond with the experimental data for benzene, toluene, methylene chloride, trichloroethylene, and methyl isobutyl ketone.  相似文献   

7.
When a new wastewater treatment plant is being designed by computer simulation, detailed data about organic fractions of influent wastewater (measured as chemical oxygen demand) are usually not available, but knowledge of the typical ranges of these fractions is indispensable. The influent chemical oxygen demand fractions can substantially influence the results of simulation-based design such as reactor volumes, solids residence time, effluent quality, oxygen demand, sludge production, etc. This article attempts to give an overview of wastewater organic fractions as modeling parameters and presents new chemical oxygen demand fractionation results from Hungary. According to the data from literature, the ratio of chemical oxygen demand components in raw wastewater is very different and the average composition is as follows: Inert particulate =17.1 %, slowly biodegradable = 57.9 %, inert soluble = 7.8 % and readily biodegradable = 17.5 %. The Hungarian wastewater samples were analyzed according to STOWA (Dutch foundation for applied water research) protocol and the obtained results were not much different from those of literature ( inert particulate = 23.7 %, slowly biodegradable = 49.8 %, inert soluble = 4.6 % and readily biodegradable = 21.9 %), but some typical characteristics were observed.  相似文献   

8.
Biofouling, associated with membranes, is considered as a major operational challenge in membrane bioreactor (MBR) technology. Interrupting the process for the formation of biofilm by the action of interspecies quorum quenching (QQ) has received a significant attention since recent years. An antifouling bacterial consortium was identified to improve biofouling inhibition performance during MBR operation. For this purpose, various QQ bacteria were isolated from laboratory-scale MBR using enrichment culture method and identified via 16S rRNA. Potential quenching strains including Enterobacter cloaca, Delftia sp., and Pseudomonas sp. were utilized to control biofouling in the MBR operated in the continuous mode for 38 days. Three laboratory-scale MBRs, including two MBRs with different anti fouling consortium and a control, were operated in parallel under similar operating conditions. Biofouling control by QQ bacteria was compared based on the membrane permeability and EPS secretion from biofilm on the membrane. Both MBRs with antifouling consortium (AC-MBRs) experienced around three times less biofouling as compared to conventional MBR leading to significant decrease in acyl homoserine lactones (AHLs) concentration in the biocake. More than 90, 45, and 49% of COD, NH4–N, and PO4 3?–P removal efficiencies elucidate that QQ bacterial consortium could effectively reduce membrane biofouling without compromising the MBR efficiency. Comparatively lower concentration of bound EPS in AC-MBRs restricted the bacterial adhesion to membrane resulting in enhanced membrane permeability depicting that a broader range of signal molecules could be hydrolyzed using antifouling consortium than single or no QQ strain in the submerged MBR.  相似文献   

9.
Laboratory scale studies were conducted in an up-flow anoxic bioreactor using synthetic fertilizer wastewater for ascertaining the denitrification efficiency. The performance of the reactor was compared using ethanol and topioca starch as the carbon source. The initial No3-N concentrations (50–250 mg/L) and hydraulic retention time (FTRT, 12–24 h) were varied to evaluate the COD and No3-N removal. The results from this study shows that ethanol gave very good denitrification efficiency (78–98%) compared to topioca starch (68–96%).  相似文献   

10.
Application and development of municipal solid waste treatment technology depends on various socio-economic and environmental factors. All those factors are work as development drivers for waste management systems. The study aims to identify key drivers from case studies of waste management development trend in Sweden. Social, economic and environmental drivers are identified and presented in this study. The study identifies personal behaviour, local waste management practice, consumption and generation of waste as the key social drivers. Resource value of waste, economic benefit from waste treatment facilities and landfill tax have been acknowledged as economic drivers for developing waste treatment technology. Moreover, global climate change, environmental movement and awareness have been working as environmental drivers for developing various waste treatment methods in Sweden. In addition, the study aims to analyse emerging waste treatment technologies based on a number of literature review and questionnaire survey. Dry composting, pyrolysis-gasification, plasma arc, and anaerobic digestion have been identified as potential emerging technologies for waste management systems in Sweden.  相似文献   

11.
The structure, diversity and dynamics of microbial communities from a swallow hole draining agricultural land and two connected karst springs (Switzerland) were studied using molecular microbiological methods and related to hydrological and physicochemical parameters. Storm responses and an annual hydrological cycle were monitored to determine the short- and long-term variability, respectively, of bacterial communities. Statistical analysis of bacterial genetic fingerprints (16S rDNA PCR-DGGE) of spring water samples revealed several clusters that corresponded well with different levels of the allochthonous swallow hole contribution. Microbial communities in spring water samples highly affected by the swallow hole showed low similarities among them, reflecting the high temporal variability of the bacterial communities infiltrating at the swallow hole. Conversely, high similarities among samples with low allochthonous contribution provided evidence for a stable autochthonous endokarst microbial community. Three spring samples, representative for low, medium and high swallow hole contribution, were analysed by cloning/sequencing in order to identify the major bacterial groups in the communities. The autochthonous endokarst microbial community was mainly characterized of δ-Proteobacteria, Acidobacteria and Nitrospira species. A high percentage of unknown sequences suggested further that many karst aquifer bacteria are still undiscovered. Finally, the potential use of groundwater biomonitoring using microbial communities is discussed.  相似文献   

12.
Polyvinyl alcohol-containing desizing wastewater discharged within final textile wastewater has a great impact to the environment due to its poor biodegradability. An improved lab-scale hybrid anaerobic baffled reactor was developed to treat desizing wastewater. The modification was achieved by increasing the height of hybrid anaerobic baffled reactor and application of proper effluent recycle enabled to increase the ability of entrapping microbe-rich small particles in the reactor and prompted the formation of granules. The significant difficulty in hybrid anaerobic baffled reactor operation is the slow start-up procedure, which is crucial to the overall polyvinyl alcohol-containing desizing wastewater treatment. Therefore, the ability of a hybrid anaerobic baffled reactor, treating desizing wastewater, to achieve a prompt start-up was studied at lab-scale. Results showed that inoculated with anaerobic granular sludge and adoption of effluent recycle during start-up, the system demonstrated a good performance of polyvinyl alcohol removal efficiency (above 17.2 %) and satisfactory stability of pH and alkalinity in effluent (range around 7.4–8.0 and 700–920 mg/L, respectively) and the sludge appeared obviously granulation. Thus, the prompt start-up was achieved after 60 days. The start-up strategy used for this process has achieved its goals by creating an active microbial population. The improved lab-scale hybrid anaerobic baffled reactor proved to be an efficient reactor configuration for the treatment of desizing wastewater, which favored the prompt start-up of hybrid anaerobic baffled reactor. The results also provide evidence to modify the design of anaerobic baffled reactor to improve reactor performance.  相似文献   

13.
Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimise their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contactor were investigated. The overall removal efficiencies of all the compounds ranged from 41 %to 100%. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contactors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10–48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge.  相似文献   

14.
The voltage and the power production of two gram negative and two gram positive bacteria in four identical continuous flow microbial fuel cells combined with biological wastewater treatment units were evaluated and compared in the present study. Each microbial fuel cell and biological treatment unit was operated at four different flow rates and four different external load resistances. The results show that overall removal efficiency of chemical oxygen demand for all four systems can reach more than 85.5 %. Each pure culture has different power generation performance that can be affected by some factors, such as wastewater characteristics, influent flow rate and hydraulic retention time of reactor. Good linear relationships between the flow rate and the potential and between the flow rate and the power density on four pure cultures at different external load resistances were found. Comamonas testosteroni has better power generation performance than Arthrobacter polychromogenes, especially at higher flow rate. Although Pseudomonas putida also showed higher power generation than Corynebacterium glutamicum, the difference was not statistically significant. It seems that gram negative bacteria could display higher power generation than gram positive bacteria at higher flow rate. However, more evidence is required to provide stronger proof for the difference of power generation between gram negative and gram positive bacteria.  相似文献   

15.
A pilot scale study was set up to investigate the principle design parameters of up flow anaerobic sludge blanket (UASB) reactors for treating wastewater of small communities in the tropical regions of Iran. A steel pipe with a diameter of 600 mm and a height of 3.6 m was used as the reactor in which a digestion and a 3-phase separator element had a volume of 0.848 and 0.17 m3 respectively. During this study, which lasted for 203 days, two distinct phases were carried out according to the ambient temperature. The temperature of the wastewater entering the reactor was naturally ranged from 22 to 26 °C and no heat exchanger was used. The hydraulic retention times including 2, 4, 6, 8, and 10 hours with various loading rates of 0.95 to 5.70 kg COD/m3/day for colder period and from 1.35 to 6.40 kg COD/m3/day for warmer period were examined. On the basis of the results the optimal hydraulic retention time for warmer period with a 2.20 kg COD/m3/day organic loading rate was 6 hours which BOD5, COD and TSS removal efficiency were 71, 63 and 65 percent respectively. During the colder period the removal ratio of BOD5, COD and TSS with an optimal hydraulic retention time of 8 hours and organic loading rate of 1.22 kg COD/m3/day were 54, 46 and 53 percent respectively.  相似文献   

16.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

17.
水解-好氧组合工艺处理玉米淀粉废水的机理   总被引:4,自引:2,他引:4  
根据水解-好氧处理系统中碳水化合物、蛋白质、挥发性有机酸和微生物的变化规律,探讨了利用水解-好氧组合工艺处理玉米淀粉废水的机理,得出废水中碳水化合物的降解速率远大于蛋白质.在水力停留时间为10h的第一水解段,蛋白质的去除率仅为16%,而碳水化合物的去除率却高达91%.在此组合工艺中,水解段均具有去除废水中BOD5、CODCr和提高废水可生化性的双重作用,但水解段对BOD5的去除率小于对CODCr的去除率.好氧段的主要作用是去除CODCr、氮、磷.好氧生物膜中出现钟虫、累枝虫和轮虫组合是整个工艺出水水质良好的生物学标志.  相似文献   

18.
In this study, the treatability of marble processing wastewater by electrocoagulation using aluminum and iron electrodes was investigated. The sample used was from the marble-processing plant in Sivas and its turbidity, suspended solids, chemical oxygen demand and total solids concentrations were about 1,914?NTU, 2,904, 150 and 4,750?mg/L, respectively. The effects of various operating parameters such as initial pH, current density and electrolysis time on turbidity, suspended solids, chemical oxygen demand and total solids removal efficiencies were investigated. The settling characteristics of waste sludge produced and energy and electrode consumption were also determined. The optimum values of initial pH, current density and electrolysis time in electrocoagulation studies carried out using aluminum electrode were found to be 7.8, 30?A/m2 and 5?min, respectively. Under these conditions, the removal efficiencies obtained for turbidity, suspended solids, chemical oxygen demand and total solids were 98.5, 99.2, 55.2 and 92.4?%, respectively. Corresponding energy and electrode consumptions were 0.143?kWh/kg SS and 0.010?kg Al/kg SS. For iron electrode, the optimum parameter values were found to be 7.8 pH, 20?A/m2 and 5?min, respectively. Under these conditions, removal efficiencies for turbidity, suspended solids, chemical oxygen demand and total solids were determined as 94.3, 99.1, 54.2, and 96.1?%, respectively. Energy and electrode consumptions were 0.0571?kWh/kg SS and 0.0206?kg Fe/kg SS, respectively. Settling characteristics of sludge produced during experiments carried out using both aluminum and iron electrodes were fairly good. The results showed that electrocoagulation method can be used efficiently for the treatment of marble processing wastewater under proper operating conditions.  相似文献   

19.
含苯并三唑废水是一类常规方法不能处理的化工废水,需要探讨有效的处理方法。在纳米科技理论指导下,以纳米微粒的吸附特性为切入点,确立了纳米微粒与无机高分子混凝剂最佳混凝形态之间联系的纽带。围绕混凝作用进行了纳米粉体材料混凝试验、无机高分子混凝剂混凝试验和电凝聚试验。结果发现,应用电凝聚法能有效去除废水中由苯并三唑产生的COD,从而成功地探索出有效处理含苯并三唑废水的方法。  相似文献   

20.
We present a model of bacterial sulfate reduction that includes equations describing the fractionation relationship between the sulfur and the oxygen isotope composition of residual sulfate (δ34SSO4_residual, δ18OSO4_residual) and the amount of residual sulfate. The model is based exclusively on oxygen isotope exchange between cell-internal sulfur compounds and ambient water as the dominating mechanism controlling oxygen isotope fractionation processes. We show that our model explains δ34SSO4_residual vs. δ18OSO4_residual patterns observed from natural environments and from laboratory experiments, whereas other models, favoring kinetic isotope fractionation processes as dominant process, fail to explain many (but not all) observed δ34SSO4_residual vs. δ18OSO4_residual patterns. Moreover, we show that a “typical” δ34SSO4_residual vs. δ18OSO4_residual slope does not exist. We postulate that measurements of δ34SSO4_residual and δ18OSO4_residual can be used as a tool to determine cell-specific sulfate reduction rates, oxygen isotope exchange rates, and equilibrium oxygen isotope exchange factors. Data from culture experiments are used to determine the range of sulfur isotope fractionation factors in which a simplified set of equations can be used. Numerical examples demonstrate the application of the equations. We postulate that, during denitrification, the oxygen isotope effects in residual nitrate are also the result of oxygen isotope exchange with ambient water. Consequently, the equations for the relationship between δ34SSO4_residual, δ18OSO4_residual, and the amount of residual sulfate could be modified and used to calculate the fractionation-relationship between δ15NNO3_residual, δ18ONO3_residual, and the amount of residual nitrate during denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号