首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation‐excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non‐winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash‐Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non‐winter conditions. The model is currently used for making management decisions for reducing non‐point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Cosmic‐ray soil moisture sensors have the advantage of a large measurement footprint (approximately 700 m in diameter) and are able to operate continuously to provide area‐averaged near‐surface (top 10–20 cm) volumetric soil moisture content at the field scale. This paper presents the application of this technique at four sites in southern England over almost 3 years. Results show the soil moisture response to contrasting climatic conditions during 2011–2014 and are the first such field‐scale measurements made in the UK. These four sites are prototype stations for a UK COsmic‐ray Soil Moisture Observing System, and particular consideration is given to sensor operating conditions in the UK. Comparison of these soil water content observations with the Joint UK Land Environment Simulator 10‐cm soil moisture layer shows that these data can be used to test and diagnose model performance and indicate the potential for assimilation of these data into hydro‐meteorological models. The application of these large‐area soil water content measurements to evaluate remotely sensed soil moisture products is also demonstrated. Numerous applications and the future development of a national COsmic‐ray Soil Moisture Observing System network are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Kyuhyun Byun  Minha Choi 《水文研究》2014,28(7):3173-3184
Accurate estimation of snow water equivalent (SWE) has been significantly recognized to improve management and analyses of water resource in specific regions. Although several studies have focused on developing SWE values based on remotely sensed brightness temperatures obtained by microwave sensor systems, it is known that there are still a number of uncertainties in SWE values retrieved from microwave radiometers. Therefore, further research for improving remotely sensed SWE values including global validation should be conducted in unexplored regions such as Northeast Asia. In this regard, we evaluated SWE through comparison of values produced by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR‐E) from December 2002 to February 2011 with in situ SWE values converted from snow‐depth observation data from four regions in the South Korea. The results from three areas showed similarities which indicated that the AMSR‐E SWE values were overestimated when compared with in situ SWE values, and their Mean Absolute Errors (MAE) by month were relatively small (1.1 to 6.5 mm). Contrariwise, the AMSR‐E SWE values of one area were significantly underestimated when compared with in situ SWE values and the MAE were much greater (4.9 to 35.2 mm). These results were closely related to AMSR‐E algorithm‐related error sources, which we analyzed with respect to topographic characteristics and snow properties. In particular, we found that snow density data used in the AMSR‐E SWE algorithm should be based on reliable in situ data as the current AMSR‐E SWE algorithm cannot reflect the spatio‐temporal variability of snow density values. Additionally, we derived better results considering saturation effect of AMSR‐E SWE. Despite the demise of AMSR‐E, this study's analysis is significant for providing a baseline for the new sensor and suggests parameters important for obtaining more reliable SWE. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The onset of snowmelt in the upper Yukon River basin, Canada, can be derived from brightness temperatures (Tb) obtained by the Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) on NASA's Aqua satellite. This sensor, with a resolution of 14 × 8 km2 for the 36·5 GHz frequency, and two to four observations per day, improves upon the twice‐daily coverage and 37 × 28 km2 spatial resolution of the Special Sensor Microwave Imager (SSM/I). The onset of melt within a snowpack causes an increase in the average daily 36·5 GHz vertically polarized Tb as well as a shift to high diurnal amplitude variations (DAV) as the snow melts during the day and re‐freezes at night. The higher temporal and spatial resolution makes AMSR‐E more sensitive to sub‐daily Tb oscillations, resulting in DAV that often show a greater daily range compared to SSM/I. Therefore, thresholds of Tb > 246 K and DAV > ± 10 K developed for use with SSM/I have been adjusted for detecting the onset of snowmelt with AMSR‐E using ground‐based surface temperature and snowpack wetness relationships. Using newly developed thresholds of Tb > 252 K and DAV > ± 18 K, AMSR‐E derived snowmelt onset correlates well with SSM/I observations in the small subarctic Wheaton River basin through the 2004 and 2005 winter/spring transition. In addition, the onset of snowmelt derived from AMSR‐E data gridded at a higher resolution than the SSM/I data indicates that finer‐scale differences in elevation and land cover affect the onset of snowmelt and are detectable with the AMSR‐E sensor. On the basis of these observations, the enhanced resolution of AMSR‐E is more effective than SSM/I at delineating spatial and temporal snowmelt dynamics in the heterogeneous terrain of the upper Yukon River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The Gravity Recovery and Climate Experiment (GRACE), along with other relevant field and remote sensing datasets, was used to assess the performance of two land surface models (LSMs: CLM4.5-SP and GLDAS-Noah) over the African continent and improve the outputs of the CLM4.5-SP model. Spatial and temporal analysis of monthly (January 2003–December 2010) Terrestrial Water Storage (TWS) estimates extracted from GRACE (TWSGRACE), CLM4.5-SP (TWSCLM4.5), and GLDAS-Noah (TWSGLDAS) indicates the following: (1) compared to GRACE, LSMs overestimate TWS in winter months and underestimate them in summer months; (2) the amplitude of annual cycle (AAC) of TWSGRACE is higher than that of TWSLSM (AAC: TWSGRACE > TWSGLDAS > TWSCLM4.5); (3) higher, and statistically significant correlations were observed between TWSGRACE and TWSGLDAS compared to those between TWSGRACE and TWSCLM4.5; (4) differences in forcing precipitation and temperature datasets for GLDAS-Noah and CLM4.5-SP models are unlikely to be the main cause for the observed discrepancies between TWSGRACE and TWSLSM; and (5) the CLM4.5-SP model overestimates evapotranspiration (ET) values in summer months and underestimates them in winter months compared to ET estimates extracted from field-based (FLUXNET-MTE) and satellite-based (MOD16 and GLEAM) ET measurements. A first-order correction was developed and applied to correct the CLM4.5-derived ET, soil moisture, groundwater, and TWS. The corrections improved the correspondence (i.e., higher correlation and comparable AAC) between TWSCLM4.5 and TWSGRACE over various climatic settings. Our findings suggest that similar straightforward correction approaches could potentially be developed and used to assess and improve the performance of a wide range of LSMs.  相似文献   

10.
Soil moisture (SM) can be retrieved from active microwave (AM), passive microwave (PM) and thermal infrared (TIR) observations, each having unique spatial and temporal coverages. A limitation of TIR‐based retrievals is a dependence on cloud‐free conditions, whereas microwave retrievals are almost all weather proof. A downside of SM retrievals from PM is the coarse spatial resolution. Although SM retrievals at coarse spatial resolution proved to be valuable for global‐scale and continental‐scale studies, their value for regional‐scale studies remains limited. To increase the use of SM retrievals from PM observations, an existing method to enhance their spatial resolution was applied. We present an intercomparison study over the Iberian Peninsula for three SM products on two different spatial sampling grids. The remotely sensed SM products were also compared with in situ observations from the Remedhus network. Variations between ground data and satellite‐based SM are observed; all three remotely sensed SM products show good agreement to the ground observations. The comparison shows that these ground observations and satellite data are consistent, based on the correlation coefficient (R) and root mean square error (RMSE). The remotely sensed products were intercompared after sampling at 25 × 25 km2 and after applying the smoothing filter‐based intensity modulation (SFIM) downscaling technique at 10 × 10 km2 grids. After the application of the SFIM technique, the SM retrievals from PM observations show better agreement with the other remotely sensed SM products for approximately 40% of the study area. For another 40% of the study area, we found a similar agreement between these product combinations, whereas in extreme environments, both arid and densely vegetated regions, the agreement decreases after the application of the SFIM technique. Agreement between retrievals of absolute SM content from PM and TIR observations is generally high (R = 0.77 for semi‐arid areas). This study enhances our understanding of the remotely sensed SM products for improvements of SM retrieval and merging strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The C factor, representing the impact of plant and ground cover on soil loss, is one of the important factors of the Modified Universal Soil Loss Equation (MUSLE) in the Soil and Water Assessment Tool (SWAT) to model sediment yield. The daily update of C factors in SWAT was originally determined by land use types and plant growth cycles. This does not reflect the spatial variation of C values that exists within a large land use area. We present a new approach to integrate remotely sensed C factors into SWAT for highlighting the effect of detailed vegetative cover data on soil erosion and sediment yield. First, the C factor was estimated using the abundance of ground components extracted from remote sensing images. Then, the gridding data of the C factor were aggregated to hydrological response units (HRUs), instead of to land use units of SWAT. In the end, the C factor values in HRUs were integrated into SWAT to predict sediment yield by modifying the ysed subroutine. This substitution work not only increases the spatial variation of the C factor in SWAT, but also makes it possible to utilize other sources of C databases rather than those from the United States. The demonstration in the Dage basin shows that the modified SWAT produces reasonable results in water flow simulation and sediment yield prediction using remotely sensed C values. The Nash–Sutcliffe efficiency coefficient (ENS) and R2 for surface runoff range from 0·69 to 0·77 and 0·73 to 0·87, respectively. The coefficients ENS and R2 for sediment yield were generally above 0·70 and 0·60, respectively. The soil erosion risk map based on sediment yield prediction at the HRU level illustrates instructive details on spatial distribution of soil loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses mainly on the investigation of water reserve changes in Salt Lake, Turkey, using remote‐sensing data. The study is performed in two stages: (1) correlation analysis for real‐time ground and satellite data and (2) assessment of water reserve changes using multi‐temporal Landsat imagery. First, correlation analysis is conducted to investigate the relationship between digital data from Landsat‐5 TM and spectral (in situ) measurements collected using a field spectroradiometer on the same day and time. A radiometric correction procedure, including conversions from digital numbers to radiance and from radiance to at‐satellite reflectance, is executed to make satellite data comparable to in situ measurements. This procedure show that simultaneous ground and satellite remote‐sensing data are highly correlated (0·84 > R2 > 97) and the near‐infrared region (for this study TM4‐Landsat‐5 TM, band 4) is the best spectral range to distinguish salt and water on the satellite data for the multi‐temporal analysis of the water reserve in Salt Lake. It also shows that the use of shortwave infrared band(s) will result in confusion for the determination of the water reserve in this water‐covered study area. In a second and last phase, the water reserve change in the lake is examined using multi‐temporal Landsat imagery collected in 1990, 2001 and 2005. The remotely sensed, sampled and treated data show that the water reserve in the lake has decreased markedly between 1990 and 2005 due to drought and uncontrolled water usage. It is suggested that the use of water supplies around Salt Lake should be controlled and that the lake should regularly be monitored by up‐to‐date remote‐sensing data (at least annually) for better management of water resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
This study presents a soil moisture assimilation scheme, which could assimilate microwave brightness temperature directly, based on the ensemble Kalman filter and the shuffled complex evolution method (SCE-UA). It uses the soil water model of the land surface model CLM3.0 as the forecast operator, and a radiative transfer model (RTM) as the observation operator in the assimilation system. The assimilation scheme is implemented in two phases: the parameter calibration phase and the pure soil moisture assimilation phase. The vegetation optical thickness and surface roughness parameters in the RTM are calibrated by SCE-UA method and the optimal parameters are used as the final model parameters of the observation operator in the assimilation phase. The ideal experiments with synthetic data indicate that this scheme could significantly improve the simulation of soil moisture at the surface layer. Furthermore, the estimation of soil moisture in the deeper layers could also be improved to a certain extent. The real assimilation experiments with AMSR-E brightness temperature at 10.65 GHz (vertical polarization) show that the root mean square error (RMSE) of soil moisture in the top layer (0–10 cm) by assimilation is 0.03355 m3 · m−3, which is reduced by 33.6% compared with that by simulation (0.05052 m3 · m−3). The mean RMSE by assimilation for the deeper layers (10–50 cm) is also reduced by 20.9%. All these experiments demonstrate the reasonability of the assimilation scheme developed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号