共查询到20条相似文献,搜索用时 15 毫秒
1.
I. K. Chandra Y.-H. Ju A. Ayucitra S. Ismadji 《International Journal of Environmental Science and Technology》2013,10(2):359-370
The feasibility of natural bentonite and rarasaponin–bentonite for Evans blue removal from aqueous solution was studied. Rarasaponin is a natural surfactant obtained from Sapindus rarak DC was used as modifying agent for natural bentonite modification. Adsorption experiments were conducted in a batch system at various temperatures. Several temperature-dependent isotherm models (Langmuir, Freundlich, Sips and Toth) were used to represent equilibrium data. It was found that Toth model represents the adsorption equilibrium data better than other models. Kinetic data were best represented by the pseudo-first order model. The controlling mechanism of the adsorption of Evans blue onto natural bentonite and rarasaponin–bentonite was physical adsorption. 相似文献
2.
We conducted reversed deliquescence experiments in saturated NaCl–NaNO3–H2O, KNO3–NaNO3–H2O, and NaCl–KNO3–H2O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO3, and KNO3 represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive
waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment
can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily
to the use of 25°C models for Cl–NO3 and K–NO3 ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of
these highly concentrated solutions. 相似文献
3.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels. 相似文献
4.
Geographical information system (GIS) technology was used to investigate NO3
− concentration of groundwater in the Zhangye Basin, Northwest China. Thematic information and NO3
− data of groundwater from the Zhangye Basin were analyzed in a GIS environment to study the extent and variation of NO3
− concentration and to establish spatial relationships with corresponding land use types. About 38.8% of groundwater samples
showed NO3
− concentration above the human affected value (13 mg/l NO3
−), while more than 10.2% exceeded the maximum acceptable level (50 mg/l NO3
−) according to WHO regulations. The spatial distribution of NO3
− of groundwater in the Zhangye Basin showed an obvious character of zonation; the high NO3
− concentration was mainly located in the city seat areas, and Zhangye City was the high-value center. The probability of over
90% for NO3
− concentration exceeding 13 mg/l was found in urban seat areas. The spatial analyses indicated that groundwater contamination
by NO3
− was closely related to one specific land use class, the urban. The NO3
− concentration of groundwater under urban was significantly higher than that under irrigation land or sand dune. Most of the
unacceptable NO3
− levels were found in groundwater samples assigned to urban area, but a few were also found allotted to irrigation land class.
Therefore, urban source was considered the principal source of NO3
− contamination of groundwater in the Zhangye Basin, while irrigation land source was still a possible source of NO3
− contamination. 相似文献
5.
Linglin Chu Andreas Enggist Robert W. Luth 《Contributions to Mineralogy and Petrology》2011,162(3):565-571
To examine the effect of KCl-bearing fluids on the melting behavior of the Earth’s mantle, we conducted experiments in the
Mg2SiO4–MgSiO3–H2O and Mg2SiO4–MgSiO3–KCl–H2O systems at 5 GPa. In the Mg2SiO4–MgSiO3–H2O system, the temperature of the fluid-saturated solidus is bracketed between 1,200–1,250°C, and both forsterite and enstatite
coexist with the liquid under supersolidus conditions. In the Mg2SiO4–MgSiO3–KCl–H2O systems with molar Cl/(Cl + H2O) ratios of 0.2, 0.4, and 0.6, the temperatures of the fluid-saturated solidus are bracketed between 1,400–1,450°C, 1,550–1,600°C,
and 1,600–1,650°C, respectively, and only forsterite coexists with liquid under supersolidus conditions. This increase in
the temperature of the solidus demonstrates the significant effect of KCl on reducing the activity of H2O in the fluid in the Mg2SiO4–MgSiO3–H2O system. The change in the melting residues indicates that the incongruent melting of enstatite (enstatite = forsterite + silica-rich
melt) could extend to pressures above 5 GPa in KCl-bearing systems, in contrast to the behavior in the KCl-free system. 相似文献
6.
S. Rakić V. Kahlenberg C. Weidenthaler B. Zibrowius 《Physics and Chemistry of Minerals》2002,29(7):477-484
Single crystals of C–Na2Si2O5 have been synthesized from the hydrothermal recrystallization of a glass. The title compound is monoclinic, space group P21/c with Z= 8 and unit-cell parameters a= 4.8521 (4)Å, b=23.9793(16)Å, c=8.1410(6)Å, β=90.15(1)° and V=947.2(2)Å3. The structure has been determined by direct methods and belongs to the group of phyllosilicates. It is based on layers of tetrahedra with elliptically six-membered rings in chair conformation. The sequence of directedness within a single ring is UDUDUD. The sheets are parallel to (010) with linking sodium cations in five- and sixfold coordination. Concerning the shape and the conformation of the rings, C–Na2Si2O5 is closely related to β-Na2Si2O5. However, both structures differ in the stacking sequences of the layers. A possible explanation for the frequently observed polysynthetic twinning of phase C is presented. In the 29Si MAS-NMR spectrum of C–Na2Si2O5 four well-resolved lines of equal intensity are observed at ?86.0, ?86.3, ?87.4, and ?88.2?ppm. The narrow range of isotropic chemical shifts reflects the great similarity of the environments of the different Si sites. This lack of pronounced differences in geometry renders a reliable assignment of the resonance lines to the individual sites on the basis of known empiric correlations and geometrical features impossible. 相似文献
7.
N. V. Chukanov I. V. Pekov S. Möckel A. A. Mukhanova D. I. Belakovsky L. A. Levitskaya G. K. Bekenova 《Geology of Ore Deposits》2010,52(7):599-605
Kamarizaite, a new mineral species, has been identified in the dump of the Kamariza Mine, Lavrion mining district, Attica Region, Greece, in association with goethite, scorodite, and jarosite. It was named after type locality. Kamarizaite occurs as fine-grained monomineralic aggregates (up to 3 cm across) composed of platy crystals up to 1 μm in size and submicron kidney-shaped segregations. The new mineral is yellow to beige, with light yellow streak. The Mohs hardness is about 3. No cleavage is observed. The density measured by hydrostatic weighing is 3.16(1) g/cm3, and the calculated density is 3.12 g/cm3. The wavenumbers of absorption bands in the IR spectrum of kamarizaite are (cm?1; s is strong band, w is weak band): 3552, 3315s, 3115, 1650w, 1620w, 1089, 911s, 888s, 870, 835s, 808s, 614w, 540, 500, 478, 429. According to TG and IR data, complete dehydration and dehydroxylation in vacuum (with a weight loss of 15.3(1)%) occurs in the temperature range 110–420°C. Mössbauer data indicate that all iron in kamarizaite is octahedrally coordinated Fe3+. Kamarizaite is optically biaxial, positive: n min = 1.825, n max = 1.835, n mean = 1.83(1) (for a fine-grained aggregate). The chemical composition of kamarizaite (electron microprobe, average of four point analyses) is as follows, wt %: 0.35 CaO, 41.78 Fe2O3, 39.89 As2O5, 1.49 SO3, 15.3 H2O (from TG data); the total is 98.81. The empirical formula calculated on the basis of (AsO4,SO4)2 is Ca0.03Fe 2.86 3+ (AsO4)1.90(SO4)0.10(OH)2.74 · 3.27H2O. The idealized formula is Fe 3 3+ (AsO4)2(OH)3 · 3H2O. Kamarizaite is an arsenate analogue of orthorhombic tinticite, space group Pccm, Pcc2, Pcmm, Pcm21, or Pc2m; a = 21.32(1), b = 13.666(6), c =15.80(1) Å, V= 4603.29(5) Å3, Z= 16. The strongest reflections of the X-ray powder diffraction pattern [\(\bar d\), Å (I, %) (hkl)] are: 6.61 (37) (112, 120), 5.85 (52) (311), 3.947 (100) (004, 032, 511), 3.396 (37) (133, 431), 3.332 (60) (314), 3.085 (58) (621, 414, 324). The type material of kamarizaite is deposited in the Mineralogical Collection of Technische Universität Bergakademie Freiberg, Germany, inventory number 82199. 相似文献
8.
9.
Shi-Hua Sang Rui-Zhi Cui Xue-Ping Zhang Kai-Jie Zhang 《Geochemistry International》2017,55(12):1131-1139
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data. 相似文献
10.
Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm?1; sh is shoulder; w is a weak band): 3525sh, 3425, 3180, 1642, 1120w, 1070w, 1035w, 900sh, 874, 833, 820, 690w, 645w, 600sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) (X = c) 2V means = 10(8)°, and 2V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu 1.93 2+ Al1.97Mg0.04Fe 0.02 2+ [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128–140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O molecules per formula; and parameter c decreases from 22.78 to 18.77 Å. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)((hkl)] are: 22.8(100)(001), 11.36(60)(002), 5.01(90)(200), 3.38(5)(123, 205), 2.780(70)(026), 2.682(30)(126), 2.503(50)(400), 2.292(20)(404). The type material of attikaite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3435/1. 相似文献
11.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases. 相似文献
12.
The dissolution rate of minerals in silicate melts is generally assumed to be a function of the rate of mass transport of the released cations in the solvent. While this appears to be the case in moderately to highly viscous solvents, there is some evidence that the rate-controlling step may be different in very fluid, highly silica undersaturated melts such as basanites. In this study, convection-free experiments using solvent melts with silica activity from 0.185–0.56 and viscosity from 0.03–4.6 Pa s show that the dissolution rate is strongly dependent on the degree of superheating, silica activity and the viscosity of the solvent. Dissolution rates increase with increasing melt temperature and decreasing silica activity and viscosity. Quartz dissolution in melts with viscosity <0.59–1.9 Pa s and silica activity <0.47 is controlled by the rate of interface reaction as shown by the absence of steady state composition and silica saturation in the interface melts. Only in the most viscous melt with the highest silica activity is quartz dissolution controlled by the rate of diffusion in the melt and only after a long initiation time. The results of this study indicate that although a diffusion-based model may be applicable to dissolution in viscous magmas, a different approach that combines the interplay between the degree of undersaturation of the melt and its viscosity is required in very fluid melts.This revised version was published online September 2004 with a correction to Figure 8. 相似文献
13.
Thaumasite, Ca3Si(OH)6(CO3)(SO4)12H2O, occurs as a low-temperature secondary alteration phase in mafic igneous and metamorphic rocks, and is recognized as a product and indicator of sulfate attack in Portland cement. It is also the only mineral known to contain silicon in six-coordination with hydroxyl (OH)? that is stable at ambient P–T conditions. Thermal expansion of the various components of this unusual structure has been determined from single-crystal X-ray structure refinements of natural thaumasite at 130 and 298 K. No phase transitions were observed over this temperature range. Cell parameters at room temperature are: a= 11.0538(6) Å, c=10.4111(8) Å and V=1101.67(10) Å3, and were measured at intervals of about 50 K between 130 and 298 K, resulting in mean axial and volumetric coefficients of thermal expansion (×10?5K?1); α a =1.7(1), α c =2.1(2), and α V =5.6(2). Although the unit cell and VIIICaO8 polyhedra show significant positive thermal expansion over this temperature range, the silicate octahedron, sulfate tetrahedron, and carbonate group show zero or negative thermal expansion, with α V (VISiO6) = ?0.6 ± 1.1, α V (IVSO4)=?5.8 ± 1.4, and α R (C–O)= 0.0 ± 1.8 (×10?5 K?1). Most of the thermal expansion is accommodated by lengthening of the R(O...O) hydrogen bond distances by on average 5σ, although the hydrogen bonds involving hydroxyl sites on VISi expand twice as much as those on molecular water, causing the [Ca3Si(OH)6(H2O)12]4+ columns to expand in diameter more than they move apart over this temperature range. The average Si–OH bond length of the six-coordinated Si atom 〈R(VISi–OH)〉 in thaumasite is 1.783(1) Å, being about 0.02 Å (?20σ) shorter than VISi–OH in the dense hydrous magnesium silicate, phase D, MgSi2H2O6. 相似文献
14.
Reactions and partial melting of peraluminous rocks in the presence of H2O-CO2–salt fluids under parameters of granulite-facies metamorphism were modeled in experiments on interaction between orthopyroxene–cordierite–biotite–plagioclase–quartz metapelite with H2O, H2O-CO2, H2O-CO2-NaCl, and H2O-CO2-KCl fluids at 600 MPa and 850°C. Rock melting in the presence of H2O and equimolar H2O-CO2 fluids generates peraluminous (A/CNK1 > 1.1) melts whose composition corresponds to magnesian calcic or calc–alkaline S-type granitoids. The melts are associated with peritectic phases: magnesian spinel and orthopyroxene containing up to 9 wt % Al2O3. In the presence of H2O-CO2-NaCl fluid, cordierite and orthopyroxene are replaced by the association of K-Na biotite, Na-bearing gedrite, spinel, and albite. The Na2O concentrations in the biotite and gedrite are functions of the NaCl concentrations in the starting fluid. Fluids of the composition H2O-CO2-KCl induce cordierite replacement by biotite with corundum and spinel and by these phases in association with potassium feldspar at X KCl = 0.02 in the fluid. When replaced by these phases, cordierite is excluded from the melting reactions, and the overall melting of the metapelite is controlled by peritectic reactions of biotite and orthopyroxene with plagioclase and quartz. These reactions produce such minerals atypical of metapelites as Ca-Na amphibole and clinopyroxene. The compositions of melts derived in the presence of salt-bearing fluids are shifted toward the region with A/CNK < 1.1, as is typical of so-called peraluminous granites of type I. An increase in the concentrations of salts in the fluids leads to depletion of the melts in Al2O3 and CaO and enrichment in alkalis. These relations suggest that the protoliths of I-type peraluminous granites might have been metapelites that were melted when interacting with H2O-CO2-salt fluids. The compositions of the melts can evolve from those with A/CNK > 1.1 (typical of S-type granites) toward those with A/CNK = 1.0–1.1 in response to an increase in the concentrations of alkali salts in the fluids within a few mole percent. Our experiments demonstrate that the origin of new mineral assemblages in metapelite in equilibrium with H2O-CO2-salt fluids is controlled by the activities of alkaline components, while the H2O and CO2 activities play subordinate roles. This conclusion is consistent with the results obtained by simulating metapelite mineral assemblages by Gibbs free energy minimization (using the PERPE_X software), as shown in log(\({a_{{H_2}O}}\))–log(\({a_{N{a_2}O}}\)) and log(\({a_{{H_2}O}}\))–log(\({a_{{K_2}O}}\)) diagrams. 相似文献
15.
Evangelos P. Tziritis 《Environmental Earth Sciences》2010,60(7):1381-1390
Kopaida plain is a cultivated region of Eastern Greece, with specific characteristic related with the paleogeographic evolution
and the changes in land use. The present article examines the contamination that derives from nitrates, in terms of contaminant
levels, definition of sources and spatial distribution of contaminant plume. For this purpose, 50 water samples were collected
from the karstic aquifer and analyzed for 15 parameters including major ions, trace elements, physicochemical parameters,
and stable isotopes. The assessment of the above parameter values along with the notes derived by the statistical process
revealed the existence of nitrate contamination which has been spatial defined with the aid of spatial interpolation techniques.
The correlation of NO3
− concentrations with the stable isotope values, defined the infiltration conditions and showed contaminant transport. Nitrate
values revealed the potential environmental threat for local people, as 10% of the samples exceeded the parametric value of
50 ppm and 54% of them are above 25 ppm, indicating no optimal quality conditions. The origin of nitrate contamination seems
to derive exclusively from the application of N-fertilizers, since the rest of potential sources were not verified by analytical
data and field works. 相似文献
16.
Experimental data are presented for the solubility of NaNbO3 in the ternary system CaCO3–CaF2–NaNbO3 (or calcite–fluorite–lueshite) over the temperature range 500–1,000°C at 0.1 GPa pressure. Liquidus to solidus phase relationships are given for the pseudo-binary join ([CaCO3]60[CaF2]40)100-x–(NaNbO3)x (0<x<60 wt%). These data show that the maximum solubility of NaNbO3 in these liquids is about 17 wt% (or 13.8 wt% Nb2O5) at approximately 930°C, and is represented by the appearance of pyrochlore as the primary liquidus phase. The sub-liquidus assemblages with decreasing temperature for NaNbO3 contents of 20–50 wt% are: pyrochlore + liquid; pyrochlore + CaF2 + liquid; pyrochlore + CaF2 + CaCO3 + liquid. The solidus assemblage is pyrochlore + CaF2 + CaCO3 at temperatures of approximately 700°C (20 wt% NaNbO3) and 600°C (40 wt% NaNbO3). NaNbO3 is present only in sub-solidus assemblages. These data show that in this fluorine-bearing anhydrous system pyrochlore is the principal Nb-hosting supra-solidus phase, in contrast to fluorine-free hydrous melts from which perovskite-structured compounds crystallize. The crystallization of pyrochlore and/or perovskite-structured compounds from haplocarbonatite liquids is thus considered to be dependent upon the F/OH ratio of the melt. 相似文献
17.
Michail N. Taran Haruo Ohashi Monika Koch-Müller 《Physics and Chemistry of Minerals》2008,35(3):117-127
Six synthetic NaScSi2O6–CaNiSi2O6 pyroxenes were studied by optical absorption spectroscopy. Five of them of intermediate (Na1−x
, Ca
x
)(Sc1−x
, Ni
x
)Si2O6 compositions show spectra typical of Ni2+ in octahedral coordination, more precise Ni2+ at the M1 site of the pyroxene structure. The common feature of all spectra is three broad absorption bands with maxima around
8,000, 13,000 and 24,000 cm−1 assigned to 3
A
2g → 3
T
2g, 3
A
2g → 3
T
1g and →3
T
1g (3
P) electronic spin-allowed transitions of VINi2+. A weak narrow peak at ∼14,400 cm−1 is assigned to the spin-forbidden 3
A
2g → 1
T
2g (1
D) transition of Ni2+. Under pressure the spin-allowed bands shift to higher energies and change in intensity. The octahedral compression modulus,
calculated from the shift of the 3
A
2g → 3
T
2g band in the (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6 pyroxene is evaluated as 85±20 GPa. The Racah parameter B of Ni2+(M1) is found gradually changing from ∼919 cm−1 at ambient pressure to ∼890 cm−1 at 6.18 GPa. The Ni end-member pyroxene [(Ca0.93 Ni0.07)NiSi2O6] has a spectrum different from all others. In addition to the above mentioned bands of Ni2+(M1) it displays several new relatively intense and broad extra bands, which were attributed to electronic transitions of
Ni2+ at the M2 site. In difference to CaO8 polyhedron geometry of an eightfold coordination, Ni2+(M2)O8 polyhedra are assumed to be relatively large distorted octahedra. Due to different distortions and different compressibilities
of the M1 and M2 sites the Ni2+(M1)- and Ni2+(M2)-bands display rather different pressure-induced behaviors, becoming more resolved in the high-pressure spectra than in
that measured at atmospheric pressure. The octahedral compression modulus of Ni2+(M1) in this end-member pyroxene is evaluated as 150 ± 25 GPa, which is noticeably larger than in Ni0.3 pyroxene. This is due to a smaller size and, thus, a stiffer character of Ni2+(M1)O6 octahedron in the (Ca0.93Ni0.07)NiSi2O6 pyroxene compared to (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6.
相似文献
Monika Koch-MüllerEmail: |
18.
Synthesis experiments in the system MgAl2O4–MgFe2O4 [MgAl2–xFexO4 (0 x 2)] were carried out using a PbF2 flux. The crystalline products synthesized in the compositional range of 0.6 <x 1.2 consisted of two spinel phases, whereas those synthesized in the compositional ranges of 0.0 x 0.6 and 1.2 < x 2.0 crystallized as single spinel phases. Structure refinements of the spinel single crystals, which grew in the ranges of 0.0 x 0.6 and 1.2 < x 2.0, show that the degree of randomness of cation distribution between A and B sites increases as x approaches the two-phase region. This means that the degree of the size mismatch among Mg2+, Fe3+ and Al3+occupying each equivalent mixing site increases as x approaches the two-phase region. Consequently, if the coexistence of two spinels observed in the intermediate compositions reveals the existence of a miscibility gap at low temperatures, this increase in the degree of the size mismatch among the three cations is suggested as a factor of energetic destabilization to form the miscibility gap. 相似文献
19.
V. M. Gurevich O. L. Kuskov N. N. Smirnova K. S. Gavrichev A. V. Markin 《Geochemistry International》2009,47(12):1170-1179
The heat capacity of eskolaite Cr2O3(c) was determined by adiabatic vacuum calorimetry at 11.99–355.83 K and by differential calorimetry at 320–480 K. Experimental data of the authors and data compiled from the literature were applied to calculate the heat capacity, entropy, and the enthalpy change of Cr2O3 within the temperature range of 0–1800 K. These functions have the following values at 298.15 K: C p 0 (298.15) = 121.5 ± 0.2 J K−1mol−1, S 0(298.15) = 80.95 ± 0.14 J K−1mol−1, and H 0(298.15)-H 0(0) = 15.30±0.02 kJ mol−1. Data were obtained on the transitions from the antiferromagnetic to paramagnetic states at 228–457 K; it was determined that this transition has the following parameters: Neel temperature T N = 307 K, Δ tr S = 6.11 ± 0.12 J K−1mol−1 and δ tr H = 1.87 ± 0.04 kJ mol−1. 相似文献
20.
The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch–Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made. 相似文献