首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of activated sludge acclimation on the biodegradation of toluene in the presence of a biodegradable non-aqueous phase liquid, di (2-ethylhexyl) phthalate (DEHP), in a two-phase partitioning bioreactor was characterized. The influence of the presence of DEHP, at a ratio of 0.1 % (volume ratio), and of the acclimation of activated sludge (AS) on the biodegradation of hydrophobic VOC was studied. AS was acclimated to both toluene and DEHP simultaneously. Using acclimated cells, 73 and 96 % improvement of the mean biodegradation rates was recorded for toluene and the organic solvent (DEHP), respectively, if compared to the values recorded in the absence of acclimation, during tests performed in Erlenmeyer flasks. Degradation rates were further improved by the use of acclimated AS in a reactor with a large head space; degradation yields for toluene and DEHP were above 99 and 89 %, respectively.  相似文献   

2.
An alternative iron removal treatment method using liquid-liquid extraction with the room-temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, as a solvent medium was studied. The chelating agent 1,10-phenanthroline was used as the extractant. The extraction of Fe(III) and Fe(II) was influenced significantly by the pH of the aqueous phase. The successful removal of iron was achieved; more than 95 % of the initial iron concentration was removed from the groundwater samples. However, detailed research is needed before the ionic liquid method can replace the conventional groundwater treatment protocol because the recovery rate was very low upon reuse (approximately 25–60 %). This low recovery was due to the ion exchange process; the appearance of anions from ionic liquids was also detected in groundwater samples.  相似文献   

3.
Extensive research and increasing number of potential industrial applications made ionic liquids (ILs) important materials in design of new, cleaner technologies. Together with the technological applicability, the environmental fate of these chemicals is considered and significant efforts are being made in designing strategies to mitigate their potential negative impacts. Many ILs are proven to be poorly biodegradable and relatively toxic. Bioaugmentation is known as one of the ways of enhancing the microbial capacity to degrade xenobiotics by addition of specialized strains. The aim of current work was to select microbial species that could be used for bioaugmentation in order to enhance biodegradation of ILs in the environment. We subjected activated sewage sludge to the selective pressure of 1-methyl-3-octylimidazolium chloride ([OMIM][Cl]) and isolated nine strains of bacteria which were able to prevail in these conditions. Subsequently, we utilized axenic cultures (pure cultures) of these bacteria as well as mixed consortium to degrade this IL. In addition, we performed growth inhibition tests and found that bacteria were able to grow in 2 mM, but not in 20 mM solutions of [OMIM][Cl]. The biodegradation conducted by the isolated consortium was higher than conducted by the activated sewage sludge when normalized by the cell density, which indicates that the isolated strains seem specifically suited to degrade the IL.  相似文献   

4.
A simplified environmental biological model has been developed based on biodegradation kinetics correlation to regulate and optimize wastewater treatment system of activated sludge process. All parameters included in the model are calibrated in accordance with reference data and experimental results and good agreements are achieved between calculated results and reference data or experimental results. The minimum bioreactor volume is used as objective function in the model and errors between optimal minimum volume of the model and each reported result of three references are found to be no more than 8.63 % after validation. Comparisons between optimal results and experimental data demonstrate that the deviations are negligible. The optimal minimum volume is 9.21 m3 with the error of 6.40 % to the practical bioreactor volume of a pilot treatment system. The environmental biological model has been applied to economically evaluate a former treatment system with native bacterium YZ1 and four operation periods of the pilot system with functional strain Fhhh compared with YZ1, Fhhh possesses higher biodegradation ability in purified terephthalic acid wastewater and a broader economic potential in the field of wastewater treatment.  相似文献   

5.
采集缺氧活性污泥进行室内微生物驯化,培养耐砷反硝化菌。把耐砷反硝化菌、营养液和吸附As(V)的水铁矿在厌氧条件下培养,研究反硝化菌代谢作用下,系统中Fe、Mn、NO3-和As形态的动态变化。结果表明,缺氧活性污泥中的反硝化菌具有一定的耐砷能力。在砷含量500μg/L以内,其反硝化强度基本不受砷的影响。在吸附有砷的水铁矿体系中,反硝化菌所产生的反硝化作用可导致溶液中NO3-含量的降低、Fe含量的升高、As含量降低,且As(III)所占比例增加。这说明,体系中水铁矿的还原性溶解和As(V)的还原性解吸已经发生。As含量降低的原因是,在培养体系中水铁矿的含量高,Fe的释放量只占很小比例,表层水铁矿被还原后,在次表层形成新的水铁矿吸附位,这种新吸附位不仅可以吸附溶液中已经存在的As,而且能够再吸附由于还原性溶解和解吸所释放出的As。  相似文献   

6.
Bioregeneration is a process of restoring the adsorptive capacity of the spent adsorbents through microbial action. In this study, the effects of acclimated biomass concentration, biomass acclimation concentration, dosage of granular activated carbon (GAC) and type of GAC on the bioregeneration efficiency (BE) of GAC loaded with phenol and p-nitrophenol (PNP), respectively, were investigated. The quantification was conducted by monitoring the time courses of adsorbed substrate amount during bioregeneration under the sequential adsorption and biodegradation approach. The mean BEs of phenol- and PNP-loaded GAC were found to be 78 ± 2 and 77 ± 1%, respectively. The results revealed that increasing acclimated biomass concentration and adsorbent dosage did not have an observable effect on the BEs of phenol- and PNP-loaded GAC. Additionally, the BEs were found to be almost the same for the bioregeneration of phenol-loaded GAC using biomass acclimated to 350 and 600 mg/L of phenol, respectively. The BEs of phenol-loaded GAC 830 (thermal-activated) and GAC 1240+ (thermal- and acid-activated) did not show any observable difference, but the BE of PNP-loaded GAC 1240+ was found to be greater than that of PNP-loaded GAC 830 indicating that the improvement of BE of spent GAC through further chemical activation was dependent on the type of adsorbate.  相似文献   

7.
Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.  相似文献   

8.
Three microbial consortia were isolated from three polluted soils located at an oil refinery and acclimated to grow on diesel fuel as the sole carbon source. Batch experiments were then conducted with the three consortia to study the kinetics of diesel biodegradation. The effects of temperature (25, 30 and 35?°C) and diesel concentration (0.5, 1 and 3?%) on the biodegradation of diesel were analysed. Several species were identified in the acclimated microbial consortia, and some of them appeared in more than one consortium. Thermal inhibition was observed at 35?°C. In the rest of experiments, over 80?% of the substrate was degraded after 40?h of treatment. These results proved the good feasibility of using the polluted sites as sources of mixed consortia for hydrocarbon degradation. However, diesel degradation efficiencies and rates were very similar, suggesting that the acclimation process produced mixed consortia with very similar characteristics; in this context, origin of the soil sample was not a decisive factor. A simple Monod-type kinetic model was used to simulate the biodegradation process, and accurate results were obtained. The ?? max values were between 0.17 and 0.34?h?1. The results of this study revealed that the consortia can function at high concentrations of hydrocarbons without any sign of growth inhibition, which is important for the design of bioreactors for wastewater treatment with high concentrations of fuel.  相似文献   

9.
This article presents the use of ionic liquid in the removal process of thallium ions using solid–liquid extraction by impregnating ionic liquid (1-n-hexyl-3-methylimidazolium chloride) onto an inorganic solid support (Florisil). The influence of impregnation was studied in order to improve the adsorption capacity of the material obtained. Impregnation was realized with the help of a rotavapor. Stirring time and temperature used were varied. Ionic liquid-impregnated materials obtained at different conditions of impregnation were characterized using scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transform infrared spectroscopy. In order to determine the most efficient adsorbent material, the materials obtained were used in the removal process of thallium ions from aqueous solutions, varying the initial concentration of thallium ions and the stirring time used in the adsorption process. It was observed that for the improving the adsorption capacity of the obtained ionic liquid-impregnated material, it is not necessary to increase the stirring time of the impregnation process but to increase the temperature. The experimental data obtained in the adsorption process were fitted with the Langmuir isotherm. Adsorption of thallium ions onto Florisil impregnated with 1-n-hexyl-3-methylimidazolium chloride ionic liquid corresponds to a pseudo-second-order kinetic model.  相似文献   

10.
通过对取自MBR膜生物反应器中的活性污泥加入菲进行富集培养、驯化,分离、纯化出一株能以菲为唯一碳源和能源的短杆状革兰氏阴性菌J-1,细菌长2~5μm,宽1~3μm;研究了初始底物浓度、温度、pH对菌株J-1降解菲的影响,探讨了菌株J-1胞内酶对菲降解的底物抑制动力学。试验表明:菌株J-1在48h内能将不同浓度菲的水溶液中的菲完全降解;菲浓度增加,达到完全降解的时间延长。温度对细菌的降解能力影响较大,菌株J-1对菲降解的最佳温度为28℃。1.15mg·L-1的菲,28℃时48h内能完全降解,而相同时间内10℃时的降解率仅为36.65%。菌株J-1对pH的波动具有一定的适应性,pH在一定范围内(6.0~8.4)变化对菲降解的影响不大,降解反应的最佳pH为7.2。菌株J-1对菲的降解符合一级动力学反应方程。较高的底物浓度对酶促降解反应具有抑制作用,酶促反应的最大速率常数vm=1.17mg·L-1·h-1,米氏常数Km=61.70mg·L-1;底物抑制常数kS=49.60mg·L-1;最佳底物浓度[S]opt=55.32mg·L-1。  相似文献   

11.
Phenol is one of the aromatic hydrocarbons. Phenol and its derivatives are highly toxic. These pollutants can be observed in the effluents of many industries. This research investigates the removal of phenol by the use of activated sludge in a batch system. The effects of influencing factors on biodegradation efficiency have been evaluated. The main factors considered in this study were the volume of acclimatized activated sludge inoculation, pH, temperature, and initial concentration of phenol. The inoculation volumes of 1, 3, and 5 mL of acclimatized activated sludge were taken into account. Different pH values of 3, 5, 7, 9, and 11 were examined. The experiments were conducted for temperatures of 25, 30, 35, and 40 °C and initial phenol concentrations of 400, 800, 1,000, and 1,500 ppm. The results show that the acclimatized activated sludge has a high capacity for the removal of phenol. From a 100-mL aqueous solution was removed 1,500 ppm of phenol after 80 h. Furthermore, maximum phenol removal was observed for an inoculation volume of 5 mL for three different phenol concentrations of 100, 400, and 800 ppm. The best pH was 7 for the biodegradation process, and the optimum temperature was 30 °C. It was further found that an increase in the phenol concentration increased its removal time. Moreover, the activated sludge could effectively remove about 99.9 % of phenol from a synthetic aqueous solution in a batch system.  相似文献   

12.
Surfactant-enhanced remediation of contaminated soil: a review   总被引:48,自引:0,他引:48  
Extracting aqueous solutions with or without additives are employed to solubilize contaminants in soil. Since water solubility is the controlling removing mechanism, additives are used to enhance efficiencies. These additives can reduce the time to treat a site compared to the use of water alone. Additives must be of low toxicity and biodegradable. The research in this area has focussed mainly on halogenated volatile organic compounds (VOCs) and is still quite limited for metal removal. Additives include surfactants, organic and inorganic acids, sodium hydroxide, which can dissolve organic soil matter, water-soluble solvents such as methanol, displacement of cations with nontoxic ones, complexing agents such as EDTA, acids in combination with complexing agents or oxidizing/reducing agents. Cationic, anionic and nonionic surfactants are particularly used for soil washing or flushing. They contain both hydrophobic and hydrophilic portions, making them ideal for solubilization of hydrophobic compounds. Numerous studies have indicated that surfactants enhance recoveries of non-aqueous phase liquids (NAPLs). There have also been indications that pretreatment of soil with surfactant washing to solubilize hydrophobic compounds such as PAHs enhances biodegradation of these contaminants. A few in situ field studies have been performed with surfactants. Large-scale treatment has been done mostly for organic removal. Soil pH, soil type, cation exchange capacity (CEC), particle size, permeabilities and contaminants all affect removal efficiencies. High clay and organic matter contents are particularly detrimental. Understanding the chemistry of the binding of the contaminant and the hydrogeology of the site are very important. Once the water is pumped from the soil, it must be extracted and then treated to remove the hydrocarbons and metals. Several technologies exist such as sodium hydroxide or sodium sulfide precipitation, ion exchange, activated carbon adsorption, ultrafiltration, reverse osmosis, electrodialysis and biological processes. Recycling of the surfactants is desired to decrease treatment costs.

This paper will provide an overview of the laboratory research, field demonstration and full-scale application of surfactants for the remediation of contaminated soil. The majority of pilot scale in situ flushing tests, particularly in the United States, have involved the use of surfactants and co-solvents. There are only a few full-scale projects however. Recent laboratory scale efforts by the authors concerning the use of biosurfactants, biologically produced surfactants, to enhance the removal of copper, cadmium and zinc from contaminated soils and sediments are discussed. Three types of biosurfactants were evaluated for their effectiveness. They included a lipopeptide called surfactin from Bacillus subtilis, a rhamnolipid from Pseudomonas aeruginosa and a sophorolipid from Torulopsis bombicola. The results indicated the feasibility of removing the metals with the anionic biosurfactants even though the exchangeable fractions were not significant.  相似文献   


13.
The properties of activated sludge are very important in a membrane bioreactor (MBR) in terms of membrane fouling. The most important parameters affecting the membrane fouling can be listed as mixed liquor suspended solid (MLSS) concentration, soluble microbial products (SMPs), extracellular polymeric substances (EPSs), floc size, aeration and viscosity of both supernatant and activated sludge. The COD/TKN ratio also affects the physical properties of sludge in MBR system. This study aimed to investigate the effect of chemical oxygen demand-to-total Kjeldahl nitrogen (COD/TKN) ratio of feed wastewater treated in an MBR on biological components of activated sludge. The activated sludge characteristics were determined by quantitative analyses such as MLSS, EPS, SMP, floc size distribution, zeta potential, relative hydrophobicity and capillary suction time in a submerged MBR treating simulated wastewater having different COD/TKN ratios (16, 56 and 107). The COD and TKN removal efficiencies were found to be almost equal in the sMBRs having different COD/TKN ratios. However, it was seen that the EPS content and SMP concentration in the supernatant increased with increasing COD/TKN ratio. The results indicated that the COD/TKN ratio of feed should be considered as an effective parameter on activated sludge properties in sMBR systems.  相似文献   

14.
To comparatively study the biodegradation of phthalic acid esters (PAEs) in sewage sludge by composting with pig manure or with rice straw, four composting modes were designed: Mode 1 (sewage sludge + pig manure + intermittent aeration), Mode 2 (sewage sludge + pig manure + continuous aeration), Mode 3 (sewage sludge + rice straw + intermittent aeration) and Mode 4 (sewage sludge + rice straw + continuous aeration). Physicochemical parameters of composts were measured according to standard methods and PAEs were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The biodegradation of each PAE was also discussed. The results showed that Mode 1 was the best mode to biodegrade PAEs, which might be related to the wide class of indigenous microbial communities in pig manure and high efficiency of intermittent ventilation for providing oxygen. During the biodegradation process, di(2-ethylhexyl) phthalate was the most abundant and decisive for the removal of total PAEs. It showed a first-order kinetic degradation model. In conclusion, composting with pig manure could be suggested as an effective detoxification process for the removal of PAEs from sewage sludge, providing a safe end product.  相似文献   

15.
In this paper, Atterberg limits and hydraulic conductivity tests are performed in sand samples mixed with different amounts of silt, zeolite and bentonite. The testing liquids consist of kerosene, two paraffin oils with different viscosities, distilled water and 1, 10 and 1,000 mol/m3 calcium chloride solutions. Experimental results show that soils completely lost their plasticity when are in contact with light non-aqueous phase liquids, and that the liquid limit depends on the dynamic viscosity of the fluid surrounding the particles. Also, tested soils show different hydraulic conductivity with water before and after Ca2+ ions are introduced in the permeating fluid, in agreement with the change in the formation Gibbs free energy and diffuse double layer theory. Finally, the influence of viscosity ratio, specific surface of particles, soil fabric and PFI on hydraulic conductivity is discussed and related to the effective particle diameter and soil void ratio.  相似文献   

16.
An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.  相似文献   

17.
The mycotoxin patulin is produced by the blue mould pathogen Penicillium expansum in rotting apples during postharvest storage. Patulin is toxic to a wide range of organisms, including humans, animals, fungi and bacteria. Wash water from apple packing and processing houses often harbours patulin and fungal spores, which can contaminate the environment. Ubiquitous epiphytic yeasts, such as Rhodosporidium kratochvilovae strain LS11 which is a biocontrol agent of P. expansum in apples, have the capacity to resist the toxicity of patulin and to biodegrade it. Two non-toxic products are formed. One is desoxypatulinic acid. The aim of the work was to develop rapid, high-throughput bioassays for monitoring patulin degradation in multiple samples. Escherichia coli was highly sensitive to patulin, but insensitive to desoxypatulinic acid. This was utilized to develop a detection test for patulin, replacing time-consuming thin layer chromatography or high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium and the other in semi-solid medium. Both assays allow the contemporary screening of a large number of samples. The liquid medium assay utilizes 96-well microtiter plates and was optimized for using a minimum of patulin. The semi-solid medium assay has the added advantage of slowing down the biodegradation, which allows the study and isolation of transient degradation products. The two assays are complementary and have several areas of utilization, from screening a bank of microorganisms for biodegradation ability to the study of biodegradation pathways.  相似文献   

18.
Migration characteristics of dense non-aqueous phase liquids (DNAPLs) in the subsurface can be expressed as a water–DNAPL two-phase system based on mainly the kSp relations, which describe the relations among relative permeability (k), degree of water saturation (S), and capillary pressure head (p). The aims of this research are to develop an experimental system with new type of probes, such as the electrical conductivity probe for measuring the degree of water saturation and the hydrophilic and hydrophobic tensiometer for measuring the pore water and DNAPL pressures, and also to estimate the results obtained from the developed experimental system. From these tests, the excellent kSp relations were obtained and the efficiency and validity of this developed experimental system have been confirmed in terms of the concept of the scaling coefficient calculated by interfacial tensions.  相似文献   

19.
The disposal of wastewater sludge generated during the treatment of the various municipal and industrial wastewaters is a major environmental problem. In this study the thermophilic bacterium Bacillus licheniformis, which enhances the efficiency of sludge reduction, was isolated from waste activated sludge acclimated to 55 °C. The resulting suspended solids’ degradation was 12 % and chemical oxygen demand solubilization was 18 %. To further enhance the sludge reduction potential, extra polymeric substances, which play a major role in the formation of flocs, were removed. A chemical extractant, ethylenediaminetetraacetate that is also a cation binding agent, was used to remove the extra polymeric substances. After the removal of extra polymeric substances, the suspended solids’ degradation increased from 12 to 23 % and the chemical oxygen demand solubilization increased from 18 to 25 %. These observations confirm that Bacillus licheniformis enhanced sludge reduction in non-flocculated sludge (with the removal of extra polymeric substances) as compared to flocculated sludge (without the removal of extra polymeric substances).  相似文献   

20.
Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimise their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contactor were investigated. The overall removal efficiencies of all the compounds ranged from 41 %to 100%. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contactors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10–48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号