首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The ability of ion-exchange resin for ammonia removal from aqueous solution was studied. The results showed that Amberlite ion-exchange resin was effective in removing ammonia from aqueous solution. Factorial design and response surface methodology were applied to evaluate and optimize the effects of pH, resin dose, contact time, temperature and initial ammonia concentration. Low pH condition was preferred with the optimum pH found to be 6. High resin dose generated high removal rate and low exchange capacity. Results of factorial design and response surface methodology showed that temperature was not a significant parameter. The model prediction was in good agreement with observed data (R 2 = 0.957). The optimum Q e was 28.78 mg/g achieved at pH = 6 and initial TAN concentration of 3000 mg/L. The kinetics followed the pseudo-second-order kinetic model (R 2 = 0.999). Equilibrium data were fitted to Langmuir and Freundlich isotherm models with Langmuir model providing a slightly better predication (R 2 = 0.996). The resin was completely regenerated by 2 N H2SO4.  相似文献   

2.
The sorption of cadmium and humic acids from aqueous solutions using surface-modified nanozeolite A has been investigated under various examination conditions. The morphology of untreated and treated nanozeolite was studied under scanning electron microscope and transmission electron microscope. Isotherms of cadmium adsorption onto surface-modified nanozeolite A were studied at different pH, solid to liquid ratio, adsorbate concentration and interaction time. Kinetic and equilibrium studies were conducted and the equilibrium data have been analyzed using Langmuir and Freundlich isotherm models. The study revealed that experimental results were in agreement with the Freundlich model. The Langmuir monolayer adsorption capacity was found to be 1666.67 g cadmium and 6.75 g humic acid per gram of modified nanozeolite A, which is higher than that of reported value for other zeolites. The sorption ability was enhanced by surface modification and reduction in size and enabled the zeolite to adsorb cadmium. The adsorption of cadmium and humic acid on nanozeolite was found to be the highest at pH 6 and 3, respectively. Results showed that solid to liquid ratio and pH are the most important factors for cadmium and humic acid removal, respectively. Effect of competitive ions was studied and results showed that there is no competition between cadmium and humic acid sorption and presence of these ions.  相似文献   

3.
A novel nanocomposite hydrogels (NCHs)-based polysaccharide was synthesized by incorporating Na-montmorillonite (NaMMT) nanoparticles (NPs) into poly acrylic acid and polyacrylamide grafted onto starch [P(AA–AAm)-g-starch] hydrogel. The conditions applied in this synthesis were optimized using the Taguchi orthogonal experimental design method. The characterization of NaMMT NPs/P(AA–AAm)-g-starch NCH was performed by Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy/energy-dispersive X-ray, and atomic force microscopy analyses. The resulting optimized NCH showed improved pH-dependent swelling and enhanced safranin adsorption capacity compared to pure hydrogel and NaMMT NPs. Its adsorption process could be described very well by pseudo-second-order and Elovich kinetic models. The adsorption isotherm was followed by Freundlich isotherm models. The conclusion confirms the prospect of NCH as an effective adsorbent for the adsorption of dyes from aqueous solutions.  相似文献   

4.
Absorption of nitric oxide from nitric oxide /air mixture in hydrogen peroxide solution has been studied on bench scale internal loop airlift reactor. The objective of this investigation was to study the performance of nitric oxide absorption in hydrogen peroxide solution in the airlift reactor and to explore/determine the optimum conditions using response surface methodology. A Box–Behnken model has been employed as an experimental design. The effect of three independent variables—namely nitric oxide gas velocity, 0.02–0.11 m/s; nitric oxide gas concentration, 300–3,000 ppm and hydrogen peroxide concentration, 0.25–2.5 %—has been studied on the absorption of nitric oxide in aqueous hydrogen peroxide in the semi-batch mode of experiments. The optimal conditions for parameters were found to be nitric oxide gas velocity, 0.02 m/s; nitric oxide gas concentration, 2,246 ppm and hydrogen peroxide concentration, 2.1 %. Under these conditions, the experimental nitric oxide absorption efficiency was observed to be ~65 %. The proposed model equation using response surface methodology has shown good agreement with the experimental data, with a correlation coefficient (R 2) of 0.983. The results showed that optimised conditions could be used for the efficient absorption of nitric oxide in the flue gas emanating from industries.  相似文献   

5.
Biotreatment of methylparathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate) was studied in aqueous mineral salts medium containing fungal culture to demonstrate the potential of the pure culture (monoculture) of Fusarium sp in degrading high concentration of methylparathion. A statistical Box–Behnken design of experiments was performed to evaluate the effects of individual operating variables and their interactions on the methylparathion removal with initial concentration of 1,000 mg/L as fixed input parameter. A full factorial Box–Behnken design of experiments was used to construct response surfaces with the removal, the extent of methylparathion biodegradation, removal of chemical oxygen demand and total organic carbon, and the specific growth rate as responses. The temperature (X 1), pH (X 2), reaction time (X 3) and agitation (X 4) were used as design variables. The result was shown that experimental data fitted with the polynomial model. Analysis of variance showed a high coefficient of determination value of 0.99. The maximum biodegradation of methylparathion in terms of the methylparathion removal (Y 1), chemical oxygen demand removal (Y 2) and total organic carbon removal (Y 3) were found to be 92, 79.2 and 57.2 % respectively. The maximum growth in terms of dry biomass (Y 4) was 150 mg/L. The maximum biodegradation corresponds to the combination of following factors of middle level of temperature (X 1 = 30 °C), pH (X 2 = 6.5), agitation (X 4 = 120 rpm) and the highest level of reaction time (X 3 = 144 h). The removal efficiency of methylparathion biodegradation was achieved 92 %. It was observed that optimum biotreatment of methylparathion can be successfully predicted by response surface methodology.  相似文献   

6.
Improvement of cadmium ion electrochemical removal from dilute aqueous solutions in a spouted bed reactor was investigated. Enlargement of cathode surface area from 1,000 to 1,500 cm2 resulted in a decrease of nearly 30 % in both of the process time and the specific energy consumption. Application of a three-stage electrolysis process for a solution containing initial concentration of 270 ppm cadmium ion, resulted in the removal of 99.9 % cadmium ion in 135 min with the specific energy consumption of 2.29 kWh/kg, 23 % less than the value of a single-stage process. For a solution with cadmium ion initial concentration of 180 ppm, 99.9 % of cadmium ion was removed in 135.5 min by application of a two-stage electrolysis process, while the specific energy consumption was 2.82 kWh/kg, 30 % less than that of a single-stage process. For a solution with cadmium ion initial concentration of 90 ppm, 99.5 % of cadmium ion was removed in 100.2 min with the specific energy consumption of 3.78 kWh/kg in a single-stage electrolysis process.  相似文献   

7.
The batch removal of hexavalent chromium from aqueous solutions using almond shell, activated sawdust, and activated carbon, which are low-cost biological wastes under different experimental conditions, was investigated in this study. The influences of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time, and pH of solution were investigated. The adsorption was solution pH dependent and the maximum adsorption was observed at a solution pH of 2.0. The capacity of chromium adsorption under equilibrium conditions increased with the decrease in particle sizes. The equilibrium was achieved for chromium ion after 30?min. Experimental results showed that low-cost biosorbents are effective for the removal of pollutants from aqueous solution. The pseudo-second-order kinetic model gave a better fit of the experimental data as compared to the pseudo-first-order kinetic model. Experimental data showed a good fit with the Freundlich isotherm model. Changes in the thermodynamic parameters, including Gibbs free energy (??Go), enthalpy (??Ho), and entropy (??So), indicated that the biosorption of hexavalent chromium onto almond shell, activated sawdust, and activated carbon was feasible, spontaneous, and endothermic in the temperature range 28?C50?°C.  相似文献   

8.
Nanohybrid of graphene oxide (GO) and azide-modified Fe3O4 nanoparticles (NPs) were fabricated using click reaction. First, Fe3O4 NPs were modified by 3-azidopropionic acid. Then, click-coupling of azide-modified Fe3O4 NPs with alkyne-functionalized GO was carried out in the presence of CuSO4·5H2O and sodium l-ascorbate at room temperature. The attachment of Fe3O4 NPs onto the graphene nanosheets was confirmed by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy, thermogravimetric analysis, energy dispersive X-ray spectrometry and X-ray diffraction spectrometry. As the FTIR spectroscopy and energy dispersive X-ray spectrometry analysis showed, the final magnetic graphene nanosheets were also reduced by sodium ascorbate which is a merit for click-coupling reactions. The specific saturation magnetization of the Fe3O4-clicked GO was 44.3 emu g?1. The synthesized hybrid was used in the adsorption of methylene blue and congo red (CR). The adsorption capacities in the studied concentration range were 109.5 and 98.8 mg g?1 for methylene blue and CR, respectively.  相似文献   

9.
The Global Positioning System (GPS) has become a popular sensing system for positioning because it is free and always available and can be used in all weathers. However, the accuracy of GPS is dependent on the measurement factors selected by the surveyor. Therefore, the purpose of this research is to determine the optimal factors of the GPS positioning process. The selected process variables were measurement time and duration, recording interval, and mask angle. To determine the optimum conditions of these factors, a three-level Box–Behnken design was utilized. The results indicated that the optimum conditions of the experimental factors are 13 h as measurement time, 21.77 min as the measurement duration, 22.43 s as the range interval, and 8° as the mask angle.  相似文献   

10.
Laboratory-scale-simulated experiments were carried out using Cr(III) solutions to identify the Cr(III) retention behavior of natural red earth (NRE), a natural soil available in the northwestern coastal belt of Sri Lanka. The effects of solution pH, initial Cr(III) concentration and the contact time were examined. The NRE showed almost 100 % Cr(III) adsorption within the first 90 min. [initial [Cr(III)] = 0.0092–0.192 mM; initial pH 4.0–9.0]. At pH 2 (298 K), when particle size ranged from 125 to 180 μm the Cr(III) adsorption data were modeled according to Langmuir convention assuming site homogeneity. The pH-dependent Cr(III) adsorption data were quantified by diffused layer model assuming following reaction stoichiometries: $$ \begin{aligned} 2\, {>}{\text{AlOH}}_{{({\text{s}})}} + {\text{ Cr }}\left( {\text{OH}} \right)_{{ 2\,({\text{aq}})}}^{ + } \, \to \, \left( { {>}{\text{AlO}}} \right)_{ 2} {\text{Cr}}_{{({\text{s}})}}^{ + } + {\text{ 2H}}_{ 2} {\text{O}} \quad {\text{log K 15}}. 5 6\\ 2\, {>}{\text{FeOH}}_{{({\text{s}})}} + {\text{ Cr}}\left( {\text{OH}} \right)_{{ 2\,({\text{aq}})}}^{ + } \, \to \, \left( { {>}{\text{FeO}}} \right)_{ 2} {\text{Cr}}_{{({\text{s}})}}^{ + } + {\text{ 2H}}_{ 2} {\text{O}}\quad {\text{log K 5}}.0 8.\\ \end{aligned} $$ The present data showed that NRE can effectively be used to mitigate Cr(III) from aqueous solutions and this method is found to be simple, effective, economical and environmentally benign.  相似文献   

11.
In order to reduce the cost of the microbial-induced carbonate precipitation, mixotrophic growth of Sporosarcina pasteurii was carried out at different yeast extract/sodium acetate concentrations and constant chemical oxygen demand for optimal production of urease enzyme. Optimization of cultivation conditions was also investigated using a 3-level central composite design approach based on the response surface methodology. A good agreement between predicted values of enzyme activity and experimental results was observed (R 2 value of 0.973). All three chosen independent variables had statistically great effects on the efficiency of urease activity. The maximum activity of 2.98 mM urea min?1 was achieved at yeast extract concentration of 5 g L?1, NH4 concentration of 9.69 g L?1, and incubation time of 60 h as the optimal conditions. Thereafter, a novel injection procedure as sequencing batch mode injection has been proposed for bacteria and cementation fluid injection at obtained optimal urease activity. After fourth injection of bacteria and cementation fluid, uniform CaCO3 distribution with unconfined compression strength of 795 kPa was obtained even for poorly graded sand. The presented experimental approach for optimizing urease activity and strength production in porous media can be used to design the treatment protocol for practical engineering applications.  相似文献   

12.
The aim of this study was to remove a known pharmaceutics, dexamethasone, from an aqueous solution using clinoptilolite zeolite (CP). CP is a natural, versatile and inexpensive mineral, which has been investigated and applied in the last few decades. Herein, the experiments were carried out in the common conditions of a batch system in room temperature, and the effects of some parameters such as pH of the solution, initial concentration of dexamethasone, adsorbent dose and contact time were studied. Kinetic and isotherm of adsorption processes of dexamethasone on CP were surveyed in the current study. Results revealed that the maximum efficiency (78 %) occurred in pH = 4. The adsorption process followed a pseudo-second-order kinetic model as well as Freundlich and Sips isotherm models fitted with the experimental data well.  相似文献   

13.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

14.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

15.
选择掺入生石膏、生石灰、碳酸钠来消除有机质对水泥固化淤泥质土的不利影响。以生石膏、生石灰和碳酸钠的掺量作为3个影响因子,以固化淤泥质土7 d和90 d的无侧限抗压强度为响应值,采用旋转中心组合设计安排试验。利用响应面法对这3种外加剂的配比进行优化,并通过单因子效应分析和交互作用分析分别考察各影响因子单独变化对强度响应值的影响以及3种添加剂的交互作用效应。结果表明:强度响应对生石膏和生石灰掺量变化的敏感程度随龄期的增大而增大,而对于碳酸钠,情况则相反。7 d时,生石灰与碳酸钠的交互作用显著;而90 d时,则生石膏与碳酸钠的交互作用显著。最终得出在腐植酸掺量6%和水泥掺量15%前提下,3种外加剂在7 d和90 d的最佳配比。在最优配方的掺加下,对于7 d和90 d龄期固化淤泥质土的实际强度可以分别达到623、1 213 kPa。  相似文献   

16.
Capacitive deionization has been developed as a promising desalination alternative for removing ions from aqueous solutions. In this study, the evaluation of capacitive performance was carried out by galvanostatic charge/discharge and cyclic voltammetry experiments. The good capacitive and electrosorption behaviors suggest carbon aerogel not only treated as an electrical double layer capacitor, but also as a potential electrode in capacitive deionization processes. Also, the capacitive deionization characteristics indicate that electrosorption/regeneration can be controlled by polarization and depolarization of each electrode. It implies that sodium and chloride ions are electrostatically held to form electrical double layer on the surface of charged electrodes. The electrosorption performance at different applied voltages and solution concentrations was investigated. It is found that the removal of sodium chloride increases with increasing applied voltage and solution concentration, resulting from stronger electrostatic interactions, higher concentration gradient, and less double layer overlapping effect. Based on Langmuir isotherm, the equilibrium electrosorption capacity at 1.2 V is determined as 270.59 μmol/g. Under this condition, due to the presence of micropores associated with the double layer overlapping, the effective surface area for electrosorption of ions at 1.2 V is estimated in the range of 12.18–14.25 % of the Brunauer–Emmett–Teller surface area. The results provide a fundamental understanding of electrosorption of ions and help promoting capacitive deionization technology for water purification and desalination.  相似文献   

17.
The kinetics of Co(II) ions adsorption on thermally activated dolomite was studied with respect to the calcination temperature of natural dolomite. The sorption of Co(II) onto all samples is reasonably fast: The first 30–35 min accounts for approximately 70–80 % of Co(II) removal from feed solutions. In order to select the main rate-determining step in the overall uptake mechanism, a series of experiments were performed and data obtained were interpreted in terms of film diffusion control, intraparticle diffusion, pseudo-first-order and pseudo-second-order models. From the modeling of kinetic data, it can be concluded that adsorption of Co(II) ions from aqueous solution by heat-treated dolomite is a complex phenomenon and occurs in a mixed diffusion mode—the kinetic data are well described by the pseudo-second-order equation. The possible multistage sorption mechanism involving film diffusion and intraparticle diffusion control steps as well as chemical interaction between Co(II) ions and calcined dolomite is proposed.  相似文献   

18.
Rock friction varies as a function of mainly four parameters that are waiting time and velocity of motion between two frictional surfaces, surface roughness and normal stress. In this paper, a study on former two aspects of rock frictional behaviour has been attempted for granitic rock surface. In one experiment, waiting time for which the two surfaces remain in contact is increased from 20 seconds to 18 hours. In the second experiment, waiting time is kept constant for a series of rock slip experiments where the velocity is increased from 10??m/sec to 350??m/sec. The value of critical velocity is obtained from transformation of the stick slip motion to steady motion occurs. The relation of coefficients of dynamic and static friction with increasing velocity of motion is studied and these are used to calculate the frictional constants, namely ??a?? and ??b?? specific to the chosen simulation type.  相似文献   

19.
In the present experimental study, solid waste was used as an adsorbent and the effectiveness of the adsorbent was increased by novel treatment methods. Red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were used for the removal of lead (II). The structural and functional groups were identified to confirm the removal of lead (II) by powder X-ray diffraction and Fourier transform infrared spectroscopy analyses. The enhancement of surface area was confirmed by Brunauer–Emmett–Teller analysis. Batch adsorption experiment was also conducted, and various parameters such as the effect of adsorbent dosage, pH, contact time and initial ion concentration were analyzed and reported. Adsorption equilibrium data were investigated using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models with three parameters, and the rate of reaction was examined through kinetic models. The results indicate that in particular a novel modified form of red mud, namely iron oxide-coated acid-treated activated red mud was well fitted in lead (II) removal compared with reported adsorbents. The Langmuir isotherm shows that the maximum adsorption of adsorbate per gram was greater than other adsorbents (27.02 mg/g). In Freundlich isotherm, the Freundlich constant n values lie between 1 and 10 indicate the favorable adsorption. The calculated n values for normal red mud, acid-treated activated red mud and iron oxide-coated acid-treated activated red mud were found to be 1.9, 2.1 and 2.0 respectively. The correlation coefficient value was higher and the rate of reaction follows the pseudo-second-order kinetic model.  相似文献   

20.
In this work, a low-cost lignocellulosic adsorbent with high biosorption capacity is proposed, suitable for the efficient removal of hexavalent chromium from water and wastewater media. The adsorbent was produced by autohydrolyzing Scots Pine (Pinus Sylvestris) sawdust. The effect of the autohydrolysis conditions, i.e., pretreatment time and temperature, on hexavalent chromium biosorption was investigated using energy-dispersive X-ray spectroscopy (EDS) and UV–visible spectrophotometry. The Freundlich, Langmuir, Sips, Radke-Prausnitz, Modified Radke-Prausnitz, Tóth, UNILAN, Temkin and Dubinin-Radushkevich adsorption capacities and the rate constant values for pseudo-first- and pseudo-second-order kinetics indicated that the autohydrolyzed material exhibits significantly enhanced hexavalent chromium adsorption properties comparing with the untreated sawdust. The Freundlich’s adsorption capacity K F increased from 2.276 to 8.928 (mg g?1)(L mg?1)1/n , and the amount of hexavalent chromium adsorbed at saturation (Langmuir constant q m) increased from 87.4 to 345.9 mg g?1, indicating that autohydrolysis treatment at 240 °C for 50 min optimizes the adsorption behavior of the lignocellulosic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号