首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed structural glaciological study carried out on Kvíárjökull in SE Iceland reveals that recent flow within this maritime glacier is concentrated within a narrow corridor located along its central axis. This active corridor is responsible for feeding ice from the accumulation zone on the south‐eastern side of Öræfajökull to the lower reaches of the glacier and resulted in a c. 200 m advance during the winter of 2013–2014 and the formation of a push‐moraine. The corridor comprises a series of lobes linked by a laterally continuous zone of highly fractured ice characterised by prominent flow‐parallel crevasses, separated by shear zones. The lobes form highly crevassed topographic highs on the glacier surface and occur immediately down‐ice of marked constrictions caused by prominent bedrock outcrops located on the northern side of the glacier. Close to the frontal margin of Kvíárjökull, the southern side of the glacier is relatively smooth and pock‐marked by a number of large moulins. The boundary between this slow moving ice and the active corridor is marked by a number of ice flow‐parallel strike‐slip faults and a prominent dextral shear zone which resulted in the clockwise rotation and dissection of an ice‐cored esker exposed on the glacier surface. It is suggested that this concentrated style of glacier flow identified within Kvíárjökull has affinities with the individual flow units which operate within pulsing or surging glaciers. © 2017 The Authors Earth Surface Processes and Landforms © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents sedimentary evidence for rapid englacial debris entrainment during jökulhlaups. Previous studies of jökulhlaup sedimentology have focused predominantly on proglacial impact, rather than depositional processes within glaciers. However, observations of supraglacial floodwater outbursts suggest that englacial sediment emplacement is possible during jökulhlaups. The November 1996 jökulhlaup from Skei?arárjökull, Iceland presented one of the first opportunities to examine englacial flood deposits in relation to former supraglacial outlets. Using observations from Skei?arárjökull, this paper identifies and explains controls on the deposition of englacial flood sediments and presents a qualitative model for englacial jökulhlaup deposition. Englacial jökulhlaup deposits were contained within complex networks of upglacier‐dipping fractures. Simultaneous englacial deposition of fines and boulder‐sized sediment demonstrates that englacial fracture discharge had a high transport capacity. Fracture geometry was an important control on the architecture of englacial jökulhlaup deposits. The occurrence of pervasively frozen flood deposits within Skei?arárjökull is attributed to freeze‐on by glaciohydraulic supercooling. Floodwater, flowing subglacially or through upglacier‐dipping fractures, would have supercooled as it was raised to the surface faster than its pressure‐melting point could increase as glaciostatic pressure decreased. Evidence for floodwater contact with the glacier bed is supported by the ubiquitous occurrence of sheared diamict rip‐ups and intra‐clasts of basal ice within jökulhlaup fractures, deposited englacially some 200–350 m above the bed of Skei?arárjökull. Evidence for fluidal supercooled sediment accretion is apparent within stratified sands, deposited englacially at exceptionally high angles of rest in the absence of post‐depositional disturbance. Such primary sediment structures cannot be explained unless sediment is progressively accreted to opposing fracture walls. Ice retreat from areas of former supraglacial outbursts revealed distinct ridges characterized by localized upwellings of sediment‐rich floodwater. These deposits are an important addition to current models of englacial sedimentation and demonstrate the potential for post‐jökulhlaup landform development. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
6.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
Proglacial groundwater‐fed features, such as seeps, substantially impact proglacial geomorphology, hydrology, and ecology. However, there is a paucity of research on the impacts of climate change and glacier retreat on the extent of these important features. This paper aims to investigate the impact of glacier retreat on proglacial groundwater levels and on the extent of groundwater‐fed seeps. Research has taken place in western Skeiðarársandur, the large proglacial outwash plain of Skeiðarárjökull, a retreating temperate glacier in southeast Iceland. Changes in the extent of proglacial groundwater seeps were mapped using historical aerial photographs from 1986, 1997, and 2012. Proglacial groundwater levels were monitored in shallow boreholes between 2000 and 2012. The western margin of Skeiðarárjökull has retreated approximately 1 km beyond its position in 1986. However, this retreat was punctuated by short periods of readvance. The geomorphology and groundwater systems at the site were substantially impacted by the November 1996 jökulhlaup, whose deposits altered approximately 18% of the area of groundwater seeps. The surface areas of groundwater seeps and lakes in the study area have declined by ~97% between 1986 and 2012. Most of the decline took place after 1997, when the mean annual rate of retreat increased three‐fold. Groundwater levels also declined substantially between 2000 and 2012, although this trend varies spatially. The paper provides a conceptual model of the controls on proglacial shallow groundwater systems. Direct impacts of glacier retreat are suggested as the main cause for the declines in proglacial groundwater levels and in the extent of groundwater seeps. These declines are expected to adversely impact sandur ecology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
9.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

10.
Kuannersuit Glacier, a valley glacier on Disko Island in west Greenland, experienced a major surge from 1995 to 1998 where the glacier advanced 10·5 km and produced a ~65 m thick stacked sequence of debris‐rich basal ice and meteoric glacier ice. The aim of this study is to describe the tectonic evolution of large englacial thrusts and the processes of basal ice formation using a multiproxy approach including structural glaciology, stable isotope composition (δ18O and δD), sedimentology and ground‐penetrating radar. We argue that the major debris layers that can be traced in the terminal zone represent englacial thrusts that were formed early during the surge. Thrust overthrow was at least 200–300 m and this lead to a 30 m thick repetition of basal ice at the ice margin. It is assumed that the englacial thrusting was initiated at the transition between warm ice from the interior and the cold snout. The basal debris‐rich ice was mainly formed after the thrusting phase. Two sub‐facies of stratified basal ice have been identified; a lower massive ice facies (SM) composed of frozen diamict enriched with heavy stable isotopes overlain by laminated ice facies (SL) consisting of millimetre thick lamina of alternating debris‐poor and debris‐rich ice. We interpret the stratified basal ice as a continuum formed mainly by freeze‐on processes and localized regelation. First laminated basal ice is formed and as meltwater is depleted more sediment is entrained and finally the glacier freezes to the base and massive diamict is frozen‐on. The increased ability to entrain sediments may partly be associated with higher basal freezing rates enhanced by loss of frictional heat from cessation of fast flow and conductive cooling through a thin heavily crevassed ice during the final phase of the glacier surge. The dispersed basal ice facies (D) was mainly formed by secondary processes where fine‐grained sediment is mobilized in the vein system of ice. Our results have important implications for understanding the significance of basal ice formation and englacial thrusting beneath fast‐flowing glaciers and it provides new information about the development of landforms during a glacier surge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The recent loss of mountain glaciers in response to climate warming has been reported across a range of latitudes globally, but the processes involved are not always straightforward. In southern Pacific mid‐latitudes, twentieth‐century glacier fluctuations are thought to reflect the strength of westerly atmospheric circulation, which brings increased precipitation, leading to mass gains. We present a study of the response of Mangaehuehu Glacier, a cirque glacier on Mt Ruapehu, to climate over the last two decades. Glacier surface area fluctuated in size over this period, corresponding closely with mean end‐of‐summer snowlines in the Southern Alps. The key control on glacier extent appears to be ablation season temperature, itself controlled by regional atmospheric circulation, including El Niño‐Southern Oscillation, Interdecadal Pacific Oscillation (IPO), and to a lesser extent, Southern Annular Mode (SAM). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This paper uses detailed mapping of eskers to address three questions which are important for reconstructing meltwater behaviour beneath contemporary and ancient ice masses: ‘What controls the morphology of simple and complex esker systems?’, ‘How do esker systems evolve through time?’ and ‘Are esker patterns compatible with groundwater controlled hydraulic spacing of esker tunnels?’. Esker crestlines and widths are mapped on the Breiðamerkurjökull foreland for eight time slices between 1945 and 2007, from high resolution (~50 cm) aerial photography, permitting their long‐term morphological evolution to be analysed in a high level of detail. We find that complex eskers develop where meltwater and sediment is abundant, such that sediment clogs channels, forming distributary eskers. Isolated eskers are simpler and smaller and reflect less abundant meltwater and sediment, which is unable to clog channels. Eskers may take several decades to emerge from outwash deposits containing buried ice and can increase or decrease in size when ice surrounding and underlying them melts out. It has been suggested that groundwater–channel coupling dictates the spacing between eskers at Breiðamerkurjökull. Our results do not dispute this, but suggest that the routing of sediment and meltwater through medial moraines is an additional important control on esker location and spacing. These results may be used to better understand the processes surrounding esker formation in a variety of geographical settings, enabling a more detailed understanding of the operation of meltwater drainage systems in sub‐marginal zones beneath glaciers and ice sheets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In order to understand the differences in the suspended sediment and total dissolved solid (TDS) yield patterns between the glacial and non‐glacial catchments at the headwaters of Urumqi River, northwestern China, water samples were collected from a glacier catchment and an empty cirque catchment within the region, during three melting seasons from 2006 to 2008. These samples were analyzed to estimate suspended sediment and TDS concentrations, fluxes and erosion rates in the two adjoining catchments. There were remarked differences in suspended sediment and TDS yield patterns between the two catchments. Suspended sediment concentrations were controlled mainly by the sediment source, whereas TDS concentrations were primarily related to the hydrologic interaction with soil minerals. Generally, the glacial catchment had much higher suspended sediment and TDS yields, together with higher denudation rates, than the non‐glacial catchment. Overall, glacial catchment was mainly dominated by physical denudation process, whereas the non‐glacial catchment was jointly influenced by physical and chemical denudation processes. The observed differences in material delivery patterns were mainly controlled by the runoff source and the glacial processes. The melting periods of glacier and snow were typically the most important time for the suspended sediment and TDS yields. Meanwhile, episodic precipitation events could generate disproportionately large yields. Subglacial hydrology dynamics, glaciers pluck and grind processes could affect erodibility, and the large quantities of dust stored on the glacier surface provided additional sources for suspended sediment transport in the glacial catchment. These mechanisms imply that, in response to climate change, the catchment behaviour will be modified significantly in this region, in terms of material flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The Taebaeksan Basin comprises the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup, which are separated by a disconformity representing a 140 myr‐long hiatus. This paper deals mainly with the late Paleozoic paleogeographical and tectonic evolution of the Taebaeksan Basin on the basis of updated stratigraphy, sedimentation, and geochronology of the Pyeongan Supergroup. Late Paleozoic sedimentation in the Taebaeksan Basin recommenced at ~ 320 Ma and formed a thick siliciclastic succession of marginal marine and non‐marine alluvial deposits, the Pyeongan Supergroup. The Pyeongan Supergroup was deposited in a retroarc foreland basin formed by build‐up of a magmatic arc along the northern margin of the Sino‐Korean Craton. The formation of sedimentary deposits ceased at ~ 250 Ma due to the collision of the Sino‐Korean Craton and South China Craton that generated the Triassic Songnim orogeny in Korea. Diverse tectonic models have been proposed for assembly of the proto‐Korean Peninsula, but the indented wedge model is considered to best explain the geological features of the peninsula. The indented wedge model entails northward subduction of the central block of the Korean Peninsula (part of the South China Craton) beneath the northern block of the Korean Peninsula (part of the Sino‐Korean Craton) along the Sulu‐Imjingang Belt.  相似文献   

19.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A criterion is developed for the simulation of realistic artificial ground motion histories at soft‐soil sites, corresponding to a detailed ground motion record at a reference firm‐ground site. A complex transfer function is defined as the Fourier transform of the ground acceleration time history at the soft‐soil site divided by the Fourier transform of the acceleration record at the firm‐ground site. Working with both the real and the imaginary components of the transfer function, and not only with its modulus, serves to keep the statistical information about the wave phases (and, therefore, about the time variation of amplitudes and frequencies) in the algorithm used to generate the artificial records. Samples of these transfer functions, associated with a given pair of soft‐soil and firm‐ground sites, are empirically determined from the corresponding pairs of simultaneous records. Each function included in a sample is represented as the superposition of the transfer functions of the responses of a number of oscillators. This formulation is intended to account for the contributions of trains of waves following different patterns in the vicinity of both sites. The properties of the oscillators play the role of parameters of the transfer functions. They vary from one seismic event to another. Part of the variation is systematic, and can be explained in terms of the influence of ground motion intensity on the effective values of stiffness and damping of the artificial oscillators. Another part has random nature; it reflects the random characteristics of the wave propagation patterns associated with the different events. The semi‐empirical model proposed recognizes both types of variation. The influence of intensity is estimated by means of a conventional one‐dimensional shear wave propagation model. This model is used to derive an intensity‐dependent modification of the values of the empirically determined model parameters in those cases when the firm‐ground earthquake intensity used to determine these parameters differs from that corresponding to the seismic event for which the simulated records are to be obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号