首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This literature review surveys the previous and current researches on the co-digestion of anaerobic processes and examines the synergies effect of co-digestion with cattle manure. Furthermore, this review also pays attention to different operational conditions like operating temperature, organic loading rate (OLR), hydraulic retention time (HRT), chemical oxygen demand (COD) and volatile solid (VS) removal efficiency and biogas or methane production. This review shows that anaerobic mono-digestion of cattle manure usually causing poor performance and stability. Anaerobic studies were generally performed under mesophilic conditions maintained between 35 and 37 °C. Organic waste loading rate generally ranges from 1 to 6 g VS–COD L?1 day?1 stable condition in anaerobic digester. Generally, studies show that HRT for co-digestion of fruit–vegetables waste and industrial organic waste appears to exceed 20 days. However, the anaerobic co-digestion process is generally operated at HRT of between 10 and 20 days. VS and COD removal efficiency usually reaches up to 90 % due to co-digestion with different type organic waste. Methane–biogas production is generally obtained between 0.1 and 0.65 L CH4–biogas g?1 VS.  相似文献   

2.
Reverse osmosis (RO) concentrate generated from tannery was treated by advanced electrochemical oxidation using graphite electrodes. Catechol was selected as model organic pollutant in the RO concentrate. The influence of applied current density, catechol concentration, pH, temperature and inner electrode space of electrodes was investigated in electrochemical oxidation system. The optimized conditions were found to be current density (j), 100 mA/cm2; electrolysis time (t eco), 60 min; pH, 7.0; and temperature, 25 °C at an inner electrode space, 2 cm. The average mass transport coefficient for the removal of catechol as COD was found to be 3.0 × 10?5 m/s at optimum conditions. Faradic efficiency and specific energy consumption were also calculated for the applied current density. Further, the treatment of catechol was confirmed through Fourier transform infrared spectroscopy. Theoretical evaluation of current density suggested that the removal of catechol was controlled when supplied at above limiting applied current densities and mass transport controlled at lower of limiting current densities.  相似文献   

3.
The objective of this study was to evaluate the performance of anaerobic digestion (AD) as an eco-friendly technology for coffee wastewater (CWW) management. First, we have characterized the CWW and found that it is suitable for microbial degradation with pH adjustment. Then, we designed a simple anaerobic batch reactor (ABR) and evaluated its potential for energy yield and efficiency to remove pollutants. The experiment was carried out by operating the anaerobic digestion (AD) for 70 days. The ABR was found to be efficient for the removal of organic load (90 %), nutrients (82 %) and suspended solids (95 %) from coffee processing waste. The increased removal efficiency of pollutants was dependent on the hydraulic retention time of the system. We also estimated that the coffee waste has a potential to produce a theoretical energy yield of 4–10 million KJ/day and an organic fertilizer (digestate) of 18.8–25.2 kg VSS/day. As a result, the AD would be a more sensible consideration as an eco-friendly treatment option for the coffee waste. The use of AD for CWW treatment not only reduces emission of greenhouse gases to the environment but also circumvents the rising demand for fuel wood and charcoal that causes a severe deforestation in the coffee growing regions of the world.  相似文献   

4.
This work studied the anaerobic digestion of brown juice, a liquid residual stream generated from biomass fractionation in a green biorefinery. Biomethane potential batch tests and inhibition studies of brown juice were performed during continuous processing in an upflow anaerobic sludge blanket reactor. Prolongation of the lag phase in the batch tests with increasing substrate/inoculum ratio suggested initial inhibition, which was, however, overcome by adaptation. This was indicated by high final methane yields, which were close to the theoretical maximum of up to 500 L-CH4 kg-VS?1, achieved after 15 days for most of the set-ups. Reactor operation at the organic loading rate of 13.9 g-COD L?1 day?1 and hydraulic retention time of 3 days revealed methane yields of 202 L-CH4 kg-COD?1 (307 L-CH4 kg-VS?1). Particle size analysis of the granules used in the reactor showed disintegration of the larger granules.  相似文献   

5.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

6.
An electrochemical advanced oxidation process employing a boron-doped diamond anode for the treatment of synthetic waters and secondary effluents of wastewater treatment plants (WWTP) was studied. The efficiency and formation of transformation products (TPs) for this treatment process were investigated at different current densities for bisphenol A (BPA) spiked to synthetic water and WWTP effluents. A complete removal of the parent compound was achieved in WWTP effluents. Higher applied current densities resulted in faster removal. At the same time, a correlation between the applied current density and the ozone concentration measured in the bulk solution was revealed. Hence, the observed transformation of BPA is likely due to the generation of reactive oxygen species such as hydroxyl radicals and ozone. Based on a suspected target screening approach, four known TPs and two unreported (new) TPs were identified by LC–MS analysis. These results suggest a transformation pathway following three steps: hydroxylation of the aromatic ring, followed by oxidation of the isopropylidene bridge and finally a ring opening and formation of organic acids and other small molecules. The presence of chloride ions in WWTP effluents can result in the generation of excessive concentrations of chlorate and perchlorate during electrochemical oxidation. Applying a current density of 208 mA cm?2, a complete elimination of BPA was achievable after 15 min (Q/V = 430 mA h L?1); however, the oxidation resulted in concentrations of chlorate and perchlorate of 2.85 and 5.65 mg L?1, respectively. These values were directly dependent on the exposure time and desired degree of BPA removal.  相似文献   

7.
Exposure to high concentration of nitrate through drinking water poses a threat to human health and environment. Electrocoagulation (EC) is an alternative water treatment process that involves electrogeneration of coagulant agents. In the present study, EC was exerted for the nitrate removal in a batch reactor using aluminum and iron anodes simultaneously. The effects of the main parameters including electrical current, initial pH, NaCl dosage, initial nitrate concentration and presence of turbidity on NO3 ? removal were investigated. NO2 ? as a by-product was monitored during electrolysis, and nitrate–nitrite index was calculated. The results indicated that optimum condition was pH of 5, 300 mA electrical current, 100 mg/L NaCl and electrolysis time of 40 min, under which removal efficiency was 81.5 %. Nitrite anion was generated during electrolysis of nitrate solution which increases nitrate–nitrite index at the first reaction time, and it was eliminated after 20-min electrolysis time. Reaction kinetic of nitrate removal in the absence and presence of turbidity was first-order and zero-order, respectively.  相似文献   

8.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

9.
Tropical peat soils present higher ash content than those generated at temperate climate areas. Therefore, this study evaluated the characteristics of a Brazilian organic soil (OS), commercialized as peat, as well as its capacity in removing Cr(VI) from contaminated waters. The OS is composed of 35.5 wt% of organic matter and 56 wt% of inorganic fraction (ash), which is formed by minerals and phytoliths rich in silica (29.2 wt%) and alumina (23.6 wt%). The Cr(VI) removal tests were carried out in batch and column systems using OS and solutions of Cr(VI) prepared with distilled water and groundwater. Batch tests revealed that the organic substances in the OS caused the reduction of Cr(VI) to Cr(III), with an efficiency depending on solution pH. At pH 5.0 the Cr(VI) removal was 0.45 mg g?1 in 24 h; whereas at pH 2.0, this removal increased to 1.10 mg g?1. Since this redox reaction is very slow, the removal of Cr(VI) at pH 5.0 increased to around 2 mg g?1 after 5 days. The removal of Cr(VI) was more effective in the column tests than in the batch test due to the greater solid/solution ratio, and their half-lives were 4.4 and 26.2 h, respectively. Chemical analysis indicated that Cr(VI) was reduced by the humic substances of OS, followed by the precipitation and/or adsorption of Cr(III) into the organic and inorganic components, as anatase. The presence of Cr(III) increased the stability of anatase structure, avoiding its transformation into rutile, even after being heated at 800 °C/2 h.  相似文献   

10.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

11.
The technology of anaerobic digestion allows the use of biodegradable waste for energy production by breaking down organic matter through a series of biochemical reactions. Such process generates biogas (productivity of 0.45 Nm3/KgSV), which can be used as energy source in industrial activities or as fuel for automotive vehicles. Anaerobic digestion is an economically viable and environmentally friendly process since it makes possible obtaining clean energy at a low cost and without generating greenhouse gases. Searching for clean energy sources has been the target of scientists worldwide, and this technology has excelled on the basis of efficiency in organic matter conversion into biogas (yield in the range of 0.7–2.0 kWh/m3), considered energy carriers for the future. This paper gives an overview of the technology of anaerobic digestion of food waste, describing the metabolism and microorganisms involved in this process, as well as the operational factors that affect it such as temperature, pH, organic loading, moisture, C/N ratio, and co-digestion. The types of reactors that can be used, the methane production, and the most recent developments in this area are also presented and discussed.  相似文献   

12.
Landfilling is a common practice worldwide for solid waste management. The leachate generated at landfill sites contains various organic and inorganic pollutants while it should be treated properly. In this study, the electrocoagulation (EC) process was recognized for its simplicity and effectiveness which was used for the treatment of leachate from the Djebel Chakir landfill site in northern Tunisia. In addition, we investigated the effect of microorganisms (e.g., bacteria, fungi, spore) on sludge production by the application of autoclaving treatment on raw leachate. The application of low current density (15 mA/cm2) within 2 h of treatment and using Al-Al electrodes revealed significant improvement of performance when autoclaving was applied. The chemical oxygen demand (COD) and nitrogen removal increased from 39 to 64% and from 13 to 30%, respectively. The sludge volume was reduced from 40 to 10%, and thus, its handling and disposal costs would be significantly decreased. The energy consumption rate was stable after 40 min of treatment at about 0.8 kWh/kg COD removed. Our study shows that removal of microorganisms by autoclaving prior to the EC process is promising for landfill leachate treatment. However, since autoclaving is far from being practical and cost-effective at full-scale plant, research on coupling EC with an alternative disinfecting process might be of great interest.  相似文献   

13.
In this study, the performance of moving-bed biofilm sequencing batch reactor in operating the anaerobic/anoxic/oxic (A2O) process for treatment of wastewaters containing nitrogen and phosphorous was evaluated. For this purpose, a pilot system with two bench-scale sequencing batch reactors with a total volume of 30 L and functional volume of 10 L was used. The installation was elaborated using plexiglass, in which 60% of the functional volume consisted of PVC suspended carriers (Kaldnes K3) with a specific surface area of 560 m2/m3. The independent variables used in this study were hydraulic retention time (HRT) (1.5, 2, 2.5, 3, and 3.5 h) and the initial organic load (300, 500, 800, 1000 mg O2/L). The results showed impressive performance in the case of an initial organic load of 300 mg O2/L and HRT of 3 h with maximum removal of COD and TN, respectively, by 95.1 and 89.8%. In the case of an initial organic load of 1000 mg O2/L and HRT of 3.5 h, the maximum total phosphorus removal was 72.3%. Therefore, according to the analysis of data obtained by different HRTs, it was revealed that the system of A2O has greater efficiency in removing organic matter from wastewater in the shortest possible time.  相似文献   

14.
The treatment of egg processing effluent was investigated in a batch electrocoagulation reactor using aluminum as sacrificial electrodes. The influence of operating parameters such as electrode distance, stirring speed, electrolyte concentration, pH, current density and electrolysis time on percentage turbidity, chemical oxygen demand and biochemical oxygen demand removal were analyzed. From the experimental results, 3-cm electrode distance, 150 rpm, 1.5 g/l sodium chloride, pH of 6, 20 mA/cm2 current density, and 30-min electrolysis time were found to be optimum for maximum removal of turbidity, chemical oxygen demand and biochemical oxygen demand. The removal of turbidity, chemical oxygen demand and biochemical oxygen demand under the optimum condition was found to be 96, 89 and 84 %, respectively. The energy consumption was varied from 7.91 to 27.16 kWh/m3, and operating cost was varied from 1.36 to 4.25 US $/m3 depending on the operating conditions. Response surface methodology has been employed to evaluate the individual and interactive effects of four independent parameters such as electrolyte concentration (0.5–2.5 g/l), initial pH (4–8), current density (10–30 mA/cm2) and electrolysis time (10–50 min) on turbidity, chemical oxygen demand and biochemical oxygen demand removal. The results have been analyzed using Pareto analysis of variance to predict the responses. Based on the analysis, second-order polynomial mathematical models were developed and found to be good fit with the experimental data.  相似文献   

15.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   

16.
In this study, palm shell activated carbon modified with task-specific ionic liquid was used as a novel electrode component for the potentiometric determination of cadmium ions in water samples. The proposed potentiometric sensor has good operating characteristics, including relatively high selectivity towards the Cd (II) ion, a Nernstian response to Cd (II) ions in a working concentration range of 1.0 × 10?9–1.0 × 10?2 M, with a reasonable detection limit of 1 × 10?10 M and a slope of 30.90 ± 1.0 mV/decade. No significant changes in electrode potential were observed when the pH was varied over the range of 4–9. A direct technique based on the use of ion-selective electrode potentiometry has been developed in our laboratory for the study of reaction kinetics and kinetic methods of analysis by continuous monitoring of the rate of production or consumption of an ion. The apparent adsorption rate constant was estimated assuming pseudo-second-order kinetics. Additionally, the proposed electrode has been successfully used for the determination of the cadmium content in real samples without a significant interaction from other cationic or anionic species.  相似文献   

17.
Pectin–cerium (IV) tungstate composite (Pc/CT) has been prepared by sol gel method at room temperature. The composite ion exchanger has been characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier infrared spectroscopy. The ion exchange capacity, pH titrations, thermal stability and distribution coefficient of composite ion exchanger were investigated. The Na+ ions exchange capacity of the Pc/CT has been observed higher (1.4 meq g?1) as compared to its inorganic counterpart (0.8 meq g?1). Pc/CT composite ion exchanger was thermally stable and retained about 60 % of its ion exchange capacity up to 400 °C. The distribution study has inferred more selective the Pc/CT for Zn2+ as compared to other metal ions. The adsorption efficiency of Pc/CT was tested for methylene blue removal dye from aqueous phase. The removal of dye followed pseudo-second-order kinetics.  相似文献   

18.
Undiluted reject water from the dewatering of anaerobic sludge with an average total nitrogen content of 718 ± 117 mg L?1 (n = 63) was used to start-up autotrophic nitrogen removal in three different pilot-scale (3 m3) deammonification configurations: (1) biofilm; (2) activated sludge sequence batch; and (3) two-staged (nitritation–anammox). Time- and concentration-based aeration control with alternating aerobic/anaerobic phases was applied for all reactor configurations. All reactors were initiated without anammox-specific inoculum, and biofilm was grown onto blank carriers. During the initial start-up period, biological nitrogen removal was found to be inhibited by an excessive free ammonia content (>10 mg-N L?1), resulting from the use of high-strength reject water as the process feed. After implementation of free ammonia control by pH adjustment to 6.5–7.5, propagation of the deammonification process was observed with increased nitrogen removal with slight accumulation of NO3 ?–N. The highest total nitrogen removal rates were achieved with the single-reactor biofilm- and sludge-based deammonification processes (1.04 and 0.30 kg-N m?3 day?1, respectively). The critical factors for successful start-up and stable operation of deammonification reactors turned out to be control of pH below 7.5, dissolved oxygen at 0.3–0.8 mg-O2 L?1 and influent solids values below 1000 nephelometric turbidity units. Microbial analysis demonstrated that highest anammox enrichment was achieved in the biofilm reactor (9.40 × 108 copies g?1 total suspended solids). These data demonstrate the potential of an in-situ grown sludge- or biofilm-based concept for the development and propagation of deammonification process.  相似文献   

19.
This research evaluates the effect of both organic and ammonia loading rates and the presence of plants on the removal of chemical oxygen demand and ammonia nitrogen in horizontal subsurface flow constructed wetlands, 2 years after the start-up. Two sets of experiments were carried out in two mesocosms at different organic and ammonia loading rates (the loads were doubled); one without plants (control bed), the other colonized with Phragmites australis. Regardless of the organic loading rate, the organic mass removal rate was improved in the presence of plants (93.4 % higher for the lower loading rate, and 56 % higher for the higher loading rate). Similar results were observed for the ammonia mass removal rate (117 % higher for the lower loading rate, and 61.3 % higher for the higher loading rate). A significant linear relationship was observed between the organic loading rate and the respective removal rates in both beds for loads between 10 and 13 g m?2 day?1. The presence of plants markedly increase removal of organic matter and ammonia, as a result of the role of roots and rhizomes in providing oxygen for aerobic removal pathways, a higher surface area for the adhesion and development of biofilm and nitrogen uptake by roots.  相似文献   

20.
Indole is a highly recalcitrant aromatic heterocyclic organic compound consisting of a five-membered nitrogen-containing pyrrole ring fused to a six-membered benzene ring. This study presents the results of the electro-chemical mineralization of indole in an aqueous solution using platinum-coated titanium (Pt/Ti) electrode. A central composite design was used to investigate the effect of four parameters namely initial pH (pHo), current density (j), conductivity (k) and treatment time (t) at 5 levels. Multiple responses namely chemical oxygen demand (COD) removal (Y 1) and specific energy consumption (Y 2) were simultaneously maximized and minimized, respectively, by optimizing the parameters affecting the mineralization of indole by using the desirability function approach. At the operating conditions of pH 8.6, j = 161 A/m2, k = 6.7 mS/cm and t = 150 min, 83.8% COD removal with specific energy consumption of 36.3 kWh/kg of COD removed was observed. Ultra performance liquid chromatography, UV–visible spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry of the indole solution were performed at the optimum condition of the treatment so as to report a plausible mechanism of indole degradation. Field emission scanning electron microscopy analysis of electrodes before and after treatment was performed for determining the changes on anode surface during the treatment. Thermal analysis of the solid residue (scum) obtained was also performed for exploring its disposal prospects. Present study shows that electro-chemical oxidation can be used for mineralization of nitrogenous heterocyclic compounds such as indole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号