首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACOR), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R2, root mean square error, RMSE (m3/s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.  相似文献   

2.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   

3.
The purpose of this paper is to provide a proper, practical and convenient drilling rate index (DRI) prediction model based on rock material properties. In order to obtain this purpose, 47 DRI tests were used. In addition, the relevant strength properties i.e. uniaxial compressive strength and Brazilian tensile strength were also used and selected as input parameters to predict DRI. Examined simple regression analysis showed that the relationships between the DRI and predictors are statistically meaningful but not good enough for DRI estimation in practice. Moreover, multiple regression, artificial neural network (ANN) and hybrid genetic algorithm (GA)-ANN models were constructed to estimate DRI. Several performance indices i.e. coefficient of determination (R2), root mean square error and variance account for were used for evaluation of performance prediction the proposed methods. Based on these results and the use of simple ranking procedure, the best models were chosen. It was found that the hybrid GA-ANN technique can performed better in predicting DRI compared to other developed models. This is because of the fact that the proposed hybrid model can update the biases and weights of the network connection to train by ANN.  相似文献   

4.
Coal, as an initial source of energy, requires a detailed investigation in terms of ultimate analysis, proximate analysis, and its biological constituents (macerals). The rank and calorific value of each type of coal are managed by the mentioned properties. In contrast to ultimate and proximate analyses, determining the macerals in coal requires sophisticated microscopic instrumentation and expertise. This study emphasizes the estimation of the concentration of macerals of Indian coals based on a hybrid imperialism competitive algorithm (ICA)–artificial neural network (ANN). Here, ICA is utilized to adjust the weight and bias of ANNs for enhancing their performance capacity. For comparison purposes, a pre-developed ANN model is also proposed. Checking the performance prediction of the developed models is performed through several performance indices, i.e., coefficient of determination (R 2), root mean square error and variance account for. The obtained results revealed higher accuracy of the proposed hybrid ICA-ANN model in estimating macerals contents of Indian coals compared to the pre-developed ANN technique. Results of the developed ANN model based on R 2 values of training datasets were obtained as 0.961, 0.955, and 0.961 for predicting vitrinite, liptinite, and inertinite, respectively, whereas these values were achieved as 0.948, 0.947, and 0.957, respectively, for testing datasets. Similarly, R 2 values of 0.988, 0.983, and 0.991 for training datasets and 0.989, 0.982, and 0.985 for testing datasets were obtained from developed ICA-ANN model.  相似文献   

5.
利用弥散资料确定含水层弥散系数的标准曲线法在具体应用中存在较大的随意性,用一种基于蝙蝠算法的适线法进行一维流动二维水动力弥散模型中弥散系数的识别,在一定程度上解决了传统的标准曲线法求解含水层弥散系数中主观因素造成较大误差的现象,并能直接得出地下水流速。实例计算结果表明,基于蝙蝠算法的适线法是求解水动力弥散系数的一种高效方法,可广泛用于求解其他水文地质问题。   相似文献   

6.
In this study, we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models. We created a geographic information system database, and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth, aerial photographs, and other validated sources. A support vector regression (SVR) machine-learning model was used to divide the landslide inventory into training (70%) and testing (30%) datasets. The landslide susceptibility map was produced using 14 causative factors. We applied the established gray wolf optimization (GWO) algorithm, bat algorithm (BA), and cuckoo optimization algorithm (COA) to fine-tune the parameters of the SVR model to improve its predictive accuracy. The resultant hybrid models, SVR-GWO, SVR-BA, and SVR-COA, were validated in terms of the area under curve (AUC) and root mean square error (RMSE). The AUC values for the SVR-GWO (0.733), SVR-BA (0.724), and SVR-COA (0.738) models indicate their good prediction rates for landslide susceptibility modeling. SVR-COA had the greatest accuracy, with an RMSE of 0.21687, and SVR-BA had the least accuracy, with an RMSE of 0.23046. The three optimized hybrid models outperformed the SVR model (AUC = 0.704, RMSE = 0.26689), confirming the ability of metaheuristic algorithms to improve model performance.  相似文献   

7.
In this paper, we have utilized ANN (artificial neural network) modeling for the prediction of monthly rainfall in Mashhad synoptic station which is located in Iran. To achieve this black-box model, we have used monthly rainfall data from 1953 to 2003 for this synoptic station. First, the Hurst rescaled range statistical (R/S) analysis is used to evaluate the predictability of the collected data. Then, to extract the rainfall dynamic of this station using ANN modeling, a three-layer feed-forward perceptron network with back propagation algorithm is utilized. Using this ANN structure as a black-box model, we have realized the complex dynamics of rainfall through the past information of the system. The approach employs the gradient decent algorithm to train the network. Trying different parameters, two structures, M531 and M741, have been selected which give the best estimation performance. The performance statistical analysis of the obtained models shows with the best tuning of the developed monthly prediction model the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) are 0.93, 0.99, and 6.02 mm, respectively, which confirms the effectiveness of the developed models.  相似文献   

8.
An application of artificial intelligence for rainfall-runoff modeling   总被引:5,自引:0,他引:5  
This study proposes an application of two techniques of artificial intelligence (AI) for rainfall-runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two different ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods are compared with one EC method, Gene Expression Programming (GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydrometeorological data of three rainfall stations and one streamflow station for Juniata River Basin in Pennsylvania state of USA are taken into consideration in the model development. Statistical parameters such as average, standard deviation, coefficient of variation, skewness, minimum and maximum values, as well as criteria such as mean square error (MSE) and determination coefficient (R 2) are used to measure the performance of the models. The results indicate that the proposed genetic programming (GP) formulation performs quite well compared to results obtained by ANNs and is quite practical for use. It is concluded from the results that GEP can be proposed as an alternative to ANN models.  相似文献   

9.
Ground vibration resulting from blasting is one of the most important environmental problems at open-cast mines. Therefore, accurately approximating the blast-induced ground vibration is very significant. By reviewing the previous investigations, many attempts have been done to create the empirical models for estimating ground vibration. Nevertheless, the performance of the empirical models is not good enough. In this research work, a new hybrid model of fuzzy system (FS) designed by imperialistic competitive algorithm (ICA) is proposed for approximating ground vibration resulting from blasting at Miduk copper mine, Iran. For comparison aims, various empirical models were also utilized. Results from different predictor models were compared by using coefficient of multiple determination (R 2), variance account for and root-mean-square error between measured and predicted values of the PPVs. Results prove that the FS–ICA model outperforms the other empirical models in terms of the prediction accuracy. In other words, the FS–ICA model with R 2 of 0.942 can forecast PPV better than the USBM with R 2 of 0.634, Ambraseys–Hendron with R 2 of 0.638, Langefors–Kihlstrom with R 2 of 0.637 and Indian Standard with R 2 of 0.519.  相似文献   

10.
Compound broad-crested weir is a typical hydraulic structure that provides flow control and measurements at different flow depths. Compound broad-crested weir mainly consists of two sections; first, relatively small inner rectangular section for measuring low flows, and a wide rectangular section at higher flow depths. In this paper, series of laboratory experiments was performed to investigate the potential effects of length of crest in flow direction, and step height of broad-crested weir of rectangular compound cross-section on the discharge coefficient. For this purpose, 15 different physical models of broad-crested weirs with rectangular compound cross-sections were tested for a wide range of discharge values. The results of examination for computing discharge coefficient were yielded by using multiple regression equations based on the dimensional analysis. Then, the results obtained were also compared with genetic programming (GP) and artificial neural network (ANN) techniques to investigate the applicability, ability, and accuracy of these procedures. Comparison of results from the GP and ANN procedures clearly indicates that the ANN technique is less efficient in comparison with the GP algorithm, for the determination of discharge coefficient. To examine the accuracy of the results yielded from the GP and ANN procedures, two performance indicators (determination coefficient (R 2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of GP technique sound satisfactory regarding the performance indicators (R 2?=?0.952 and RMSE?=?0.065) with less deviation from the numerical values.  相似文献   

11.

In this study, a database developed from existing literature about permeability of cracked rock was established. The performance of Support Vector Machine (SVM) combined with optimisation algorithms: Genetic Algorithm (GA) and Particle Swarm Optimisation Algorithm (PSO) in predicting the permeability of cracked rock masses (CRM) is evaluated. Also, the sensitivity analysis of the influence factors to the permeability of CRM is conducted. The results indicate that the hybrid GA–SVM and hybrid PSO–SVM models can accurately predict the permeability of CRM in terms of the statistical performance criteria: Coefficient of Determination R2, Regression Coefficient R and Mean Residual Error (MSE); Additionally, optimisation algorithms: PSO and GA can improve significantly the predictive performance of the SVM model. Based on the sensitivity analysis, crack angle is the most important factor to change the permeability of CRM, followed by confining pressure.

  相似文献   

12.
Comparison of FFNN and ANFIS models for estimating groundwater level   总被引:3,自引:2,他引:1  
Prediction of water level is an important task for groundwater planning and management when the water balance consistently tends toward negative values. In Maheshwaram watershed situated in the Ranga Reddy District of Andhra Pradesh, groundwater is overexploited, and groundwater resources management requires complete understanding of the dynamic nature of groundwater flow. Yet, the dynamic nature of groundwater flow is continually changing in response to human and climatic stresses, and the groundwater system is too intricate, involving many nonlinear and uncertain factors. Artificial neural network (ANN) models are introduced into groundwater science as a powerful, flexible, statistical modeling technique to address complex pattern recognition problems. This study presents the comparison of two methods, i.e., feed-forward neural network (FFNN) trained with Levenberg–Marquardt (LM) algorithm compared with a fuzzy logic adaptive network-based fuzzy inference system (ANFIS) model for better accuracy of the estimation of the groundwater levels of the Maheshwaram watershed. The statistical indices used in the analysis were the root mean square error (RMSE), regression coefficient (R 2) and error variation (EV).The results show that FFNN-LM and ANFIS models provide better accuracy (RMSE = 4.45 and 4.94, respectively, R 2 is 93% for both models) for estimating groundwater levels well in advance for the above location.  相似文献   

13.
Genetic algorithm (GA) and support vector machine (SVM) optimization techniques are applied widely in the area of geophysics, civil, biology, mining, and geo-mechanics. Due to its versatility, it is being applied widely in almost every field of engineering. In this paper, the important features of GA and SVM are discussed as well as prediction of longitudinal wave velocity and its advantages over other conventional prediction methods. Longitudinal wave measurement is an indicator of peak particle velocity (PPV) during blasting and is an important parameter to be determined to minimize the damage caused by ground vibrations. The dynamic wave velocity and physico-mechanical properties of rock significantly affect the fracture propagation in rock. GA and SVM models are designed to predict the longitudinal wave velocity induced by ground vibrations. Chaos optimization algorithm has been used in SVM to find the optimal parameters of the model to increase the learning and prediction efficiency. GA model also has been developed and has used an objective function to be minimized. A parametric study for selecting the optimized parameters of GA model was done to select the best value. The mean absolute percentage error for the predicted wave velocity (V) value has been found to be the least (0.258 %) for GA as compared to values obtained by multivariate regression analysis (MVRA), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and SVM.  相似文献   

14.
Due to anthropogenic influences and large amounts of pollutant released into the groundwater, it is vital to investigate groundwater quality and to characterize susceptible areas to contamination. In this paper, a new optimization-based methodology is proposed for determining groundwater risk using DRASTIC model based on genetic algorithm optimization model and Wilcoxon test. The correlation coefficient between DRASTIC/modified DRASTIC indices and nitrate concentrations in monitoring wells is used as a criteria for evaluating the efficiency of the proposed models. In this regard, because of the unsatisfactory original DRASTIC’s result, sensitivity analysis, genetic algorithm (GA), and Wilcoxon test (1945) are carried out to tackle the subjectivity associated with the original DRASTIC model and obtain better and reliable results. The results indicate that application of Wilcoxon test and GA optimization outperforms the others. Consequently, the correlation coefficient increased remarkably as compared to the original DRASTIC model (from 0.57 to 0.82). The proposed optimization process is adaptable to be applied in different case studies; mainly since it has the ability to optimize the weights of the model based on hydrogeological characteristics of the aquifer. Finally, the risk maps of the models are prepared using ArcGIS® to determine the most vulnerable areas.  相似文献   

15.
There is no gainsaying that determining the optimal number, type, and location of hydrocarbon reservoir wells is a very important aspect of field development planning. The reason behind this fact is not farfetched—the objective of any field development exercise is to maximize the total hydrocarbon recovery, which for all intents and purposes, can be measured by an economic criterion such as the net present value of the reservoir during its estimated operational life-cycle. Since the cost of drilling and completion of wells can be significantly high (millions of dollars), there is need for some form of operational and economic justification of potential well configuration, so that the ultimate purpose of maximizing production and asset value is not defeated in the long run. The problem, however, is that well optimization problems are by no means trivial. Inherent drawbacks include the associated computational cost of evaluating the objective function, the high dimensionality of the search space, and the effects of a continuous range of geological uncertainty. In this paper, the differential evolution (DE) and the particle swarm optimization (PSO) algorithms are applied to well placement problems. The results emanating from both algorithms are compared with results obtained by applying a third algorithm called hybrid particle swarm differential evolution (HPSDE)—a product of the hybridization of DE and PSO algorithms. Three cases involving the placement of vertical wells in 2-D and 3-D reservoir models are considered. In two of the three cases, a max-mean objective robust optimization was performed to address geological uncertainty arising from the mismatch between real physical reservoir and the reservoir model. We demonstrate that the performance of DE and PSO algorithms is dependent on the total number of function evaluations performed; importantly, we show that in all cases, HPSDE algorithm outperforms both DE and PSO algorithms. Based on the evidence of these findings, we hold the view that hybridized metaheuristic optimization algorithms (such as HPSDE) are applicable in this problem domain and could be potentially useful in other reservoir engineering problems.  相似文献   

16.
This investigation aimed to examine the load carrying capacity of model piles embedded in sandy soil and to develop a predictive model to simulate pile settlement using a new artificial neural network (ANN) approach. A series of experimental pile load tests were carried out on model concrete piles, comprised of three piles with slenderness ratios of 12, 17 and 25. This was to provide an initial dataset to establish the ANN model, in attempt at making current, in situ pile-load test methods unnecessary. Evolutionary Levenberg–Marquardt (LM) MATLAB algorithms, enhanced by T-tests and F-tests, were developed and applied in this process. The model piles were embedded in a calibration chamber in three densities of sand; loose, medium and dense. According to the statistical analysis and the relative importance study, pile lengths, applied load, pile flexural rigidity, pile aspects ratio, and sand-pile friction angle were found to play a key role in pile settlement at different contribution levels, following the order: P?>?δ?>?lc/d?>?lc?>?EA. The results revealed that the optimum model of the LM training algorithm can be used to characterize pile settlement with good degree of accuracy. There was also close agreement between the experimental and predicted data with a root mean square error, (RMSE) and correlation coefficient (R) of 0.0025192 and 0.988, respectively.  相似文献   

17.
Accurate and reliable prediction of shallow groundwater level is a critical component in water resources management. Two nonlinear models, WA–ANN method based on discrete wavelet transform (WA) and artificial neural network (ANN) and integrated time series (ITS) model, were developed to predict groundwater level fluctuations of a shallow coastal aquifer (Fujian Province, China). The two models were testified with the monitored groundwater level from 2000 to 2011. Two representative wells are selected with different locations within the study area. The error criteria were estimated using the coefficient of determination (R 2), Nash–Sutcliffe model efficiency coefficient (E), and root-mean-square error (RMSE). The best model was determined based on the RMSE of prediction using independent test data set. The WA–ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ITS models. The results of the study indicate the potential of WA–ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.  相似文献   

18.
Determination of geomechanical parameters of petroleum reservoir and surrounding rock is important for coupled reservoir–geomechanical modeling, borehole stability analysis and hydraulic fracturing design. A displacement back analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) combination is investigated in this paper to identify reservoir geomechanical parameters based on ground surface displacements. An ANN is used to map the nonlinear relationship between Young’s modulus, E, Poisson’s ratio, v, internal friction angle, Φ, cohesion, c and ground surface displacements. The necessary training and testing samples for ANN are created by using numerical analysis. GA is used to search the set of unknown reservoir geomechanical parameters. Results of the numerical experiment show that the displacement back analysis technique based on ANN–GA combination can effectively identify reservoir geomechanical parameters based on ground surface movements as a result of oil and gas production.  相似文献   

19.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Optimizing reservoir operation rule is considered as a complex engineering problem which requires an efficient algorithm to solve. During the past decade, several optimization algorithms have been applied to solve complex engineering problems, which water resource decision-makers can employ to optimize reservoir operation. This study investigates one of the new optimization algorithms, namely, Bat Algorithm (BA). The BA is incorporated with different rule curves, including first-, second-, and third-order rule curves. Two case studies, Aydoughmoush dam and Karoun 4 dam in Iran, are considered to evaluate the performance of the algorithm. The main purpose of the Aydoughmoush dam is to supply water for irrigation. Hence, the objective function for the optimization model is to minimize irrigation deficit. On the other hand, Karoun 4 dam is designed for hydropower generation. Three different evaluation indices, namely, reliability, resilience, and vulnerability were considered to examine the performance of the algorithm. Results showed that the bat algorithm with third-order rule curve converged to the minimum objective function for both case studies and achieved the highest values of reliability index and resiliency index and the lowest value of the vulnerability index. Hence, the bat algorithm with third-order rule curve can be considered as an appropriate optimization model for reservoir operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号