首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pristine water bodies in the Negro River basin, Brazilian Amazon, show relatively high concentrations of mercury. These waters are characterized by acidic pH, low concentrations of suspended solids, and high amounts of dissolved organic matter and are exposed to intense solar radiation throughout the year. This unique environment creates a very dynamic redox chemistry affecting the mobility of mercury due to the formation of the dissolved elemental species (Hg0). It has been shown that in this so-called black water, labile organic matter from flooded forest is the major scavenger of photogenerated H2O2. In the absence of hydrogen peroxide, these black waters lose their ability to oxidize Hg0 to Hg2+, thus increasing Hg0 evasion across the water/atmosphere interface, with average night time values of 3.80 pmol m?2 h?1. When the dry period starts, labile organic matter inputs gradually diminish, allowing the increasing concentration of H2O2 to re-establish oxidative water conditions, inhibiting the metal flux across the water/atmosphere interface and contributing to mercury accumulation in the water column.  相似文献   

2.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

3.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   

4.
The objective of this work was to study sorption–desorption and/or precipitation–dissolution processes of Hg(II) compounds considering an eventual contact of soils with Hg-bearing wastes. In addition, this study contributes new data about Hg(II) chemistry in alkaline systems. Saline and alkaline soils with low organic matter (<1 %) and high clay content (60–70 %) were obtained near a chlor-alkali plant. Batch techniques were used to perform the experiments using 0.1 M NaNO3 solutions. Total Hg(II) concentrations ranged from 6.2 × 10?8 to 6.3 × 10?3 M. Sorption of Hg(II) was evaluated at two concentration ranges: (a) 6.2 × 10?8 to 1.1 × 10?4 M, and (b) 6.4 × 10?4 to 6.3 × 10?3 M. At low Hg(II) concentrations, adsorption occurred with a maximum sorption capacity ranging from 4 to 5 mmol/kg. At high Hg(II) concentrations, sorption–precipitation reactions occurred and maximum sorption capacity ranged from 17 to 31 mmol/kg. The distribution of Hg(II) hydrolysis products showed that Hg(OH)2 was the predominant species under soil conditions. According to sorption experiments, X-ray diffraction and chemical speciation modelling, the presence of Hg(OH)2 in the interlayer of the interstratified clay minerals can be proposed. Hg(OH)2 was partially desorbed by repeated equilibrations in 0.1 M NaNO3 solution. Desorption ranged from 0.1 to 0.9 mmol/kg for soils treated with 5.8 × 10?5 M Hg(II), whereas 2.1–3.8 mmol/kg was desorbed from soils treated with 6.3 × 10?3 M Hg(II). Formation of soluble Hg(II) complexes was limited by low organic matter content, whereas neutral Hg(OH)2 was retained by adsorption on clay mineral surfaces.  相似文献   

5.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   

6.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

7.
The influence of alkaline aqueous solutions on the properties of bentonite was investigated to evaluate the performance of bentonitic engineered barriers when contacted with alkaline groundwater. Batch and hydraulic conductivity tests were conducted on Na-bentonite using six different alkaline aqueous solutions. For the batch tests, almost no change in the montmorillonite fraction of the bentonite was observed after reacting with alkaline solutions (pH = 8.4–13.1), regardless of the solution type. On the other hand, aluminosilicate minerals (e.g., albite) were dissolved and secondary minerals (e.g., anorthite) were formed in alkaline NaOH solutions (pH > 13). The cation (Ca or Na) concentration primarily affected the swelling properties of bentonite rather than the pH of the solution, which was comparable to the results of the hydraulic conductivity tests. For the Ca solutions, the hydraulic conductivity of the bentonite specimen to the 0.02 mol/L Ca(OH)2 solution (6.5 × 10?9 cm/s) was approximately an order of magnitude lower than that of the bentonite specimen to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (5.0 × 10?8 cm/s), whereas the hydraulic conductivity to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (pH = 11.3) (5.0 × 10?8 cm/s) was slightly higher than that to the 1 mol/L CaCl2 solution (pHi = 8.4) (4.4 × 10?8 cm/s). For the NaOH solutions with pH > 13, the hydraulic conductivity of the bentonite specimen decreased with increasing Na concentration, suggesting that the effect of Na concentration was more dominant than that of permeant pH.  相似文献   

8.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

9.
Subsolidus phase relations for a K-doped lherzolite are investigated in the model system K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O at 1.5–6.0 GPa and 680–1,000°C. Phlogopite is ubiquitous and coexists with Ca-amphibole up to 3.2 GPa and 900°C. High-pressure phlogopites show a peculiar mineral chemistry dependent on pressure: e.g., at 5.5 GPa and 680°C, excess of Si (up to 3.4 apfu) coupled with deficiency in Al (as low as 0.58 apfu) and K + Na (as low as 0.97 apfu), suggest a significant amount of a talc/10 Å phase component ([v]XIISi1K?1Al ?1 IV , where [v]XII is interlayer vacancy). Mixed layering or solid solution relations between high-pressure phlogopites and the 10 Å phase, Mg3Si4O10(OH)2 nH2O, are envisaged. Phlogopite modal abundance, derived by weighted least squares, is maximum at high-pressure and relative low-temperature conditions and therefore along the slab–mantle interface (10.3 ± 0.7 wt.%, at 4.8 GPa, 680°C). In phlogopite-bearing systems, Ca-amphibole breaks down between 2.5 and 3.0 GPa, and 1,000°C, through the water conservative reaction 5(pa + 0.2 KNa?1) + 17en + 15phl = (10di + 4jd) + 5py + 12fo + 20(phl + 0.2 talc), governed by bulk composition and pressure-dependent variations of K/OH in K-bearing phases and as a result, it does not necessarily imply a release of fluid.  相似文献   

10.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   

11.
This study investigated the effect of cations and anions on the sorption and desorption of iron (Fe) and manganese (Mn) in six surface calcareous soil samples from Western Iran. Six 10 mM electrolyte background solutions were used in the study, i.e., KCl, KNO3, KH2PO4, Ca(NO3)2, NaNO3, and NH4NO3. NH4NO3 and NaNO3 increased the soil retention of Fe and Mn, whereas Ca(NO3)2 decreased the soil retention of Fe and Mn. Iron and Mn sorption was decreased by NO3 ? compared with H2PO4 ? or Cl?. The Freundlich equation adequately described Fe and Mn adsorption, with all background electrolytes. The Freundlich distribution coefficient (K F) decreased in the order H2PO4 ? > Cl? > NO3 ? for Mn and H2PO4 ? > NO3 ? > Cl? for Fe. The highest sorption reversibility was for Fe and Mn in competition with a Ca2+ background, indicating the high mobility of these two cations. A MINTEQ speciation solubility model showed that Fe and Mn speciation was considerably affected by the electrolyte background used. Saturation indices indicated that all ion background solutions were saturated with respect to siderite and vivianite at low and high Fe concentrations. All ion background solutions were saturated with respect to MnCO3(am), MnHPO4, and rhodochrosite at low and high Mn concentrations. The hysteresis indices (HI) obtained for the different ion backgrounds were regressed on soil properties indicating that silt, clay, sand, and electrical conductivity (EC) were the most important soil properties influencing Fe adsorption, while cation exchange capacity (CEC), organic matter (OM), and Mn-DTPA affected Mn adsorption in these soils.  相似文献   

12.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   

13.
Cylinders of synthetic periclase single crystals were annealed at 0.15–0.5 GPa and 900–1200 °C under water-saturated conditions for 45 min to 72 h. Infrared spectra measured on the quenched products show bands at 3,297 and 3,312 cm?1 indicating V OH ? centers (OH-defect stretching vibrations in a half-compensated cation vacancy) in the MgO structure as a result of proton diffusion into the crystal. For completely equilibrated specimens, the OH-defect concentration, expressed as H2O equivalent, was calculated to 3.5 wt ppm H2O at 1,200 °C and 0.5 GPa based on the calibration method of Libowitzky and Rossmann (Am Min 82:1111–1115, 1997). This value was confirmed via Raman spectroscopy, which shows OH-defect-related bands at identical wavenumbers and yields an H2O equivalent concentration of about 9 wt ppm using the quantification scheme of Thomas et al. (Am Min 93:1550–1557, 2008), revised by Mrosko et al. (Am Mineral 96:1748–1759, 2011). Results of both independent methods give an overall OH-defect concentration range of 3.5–9 (+4.5/?2.6) ppm H2O. Proton diffusion follows an Arrhenius law with an activation energy E a = 280 ± 64 kJ mol?1 and the logarithm of the pre-exponential factor logDo (m2 s?1) = ?2.4 ± 1.9. IR spectra taken close to the rims of MgO crystals that were exposed to water-saturated conditions at 1,200 °C and 0.5 GPa for 24 h show an additional band at 3,697 cm?1, which is related to brucite precipitates. This may be explained by diffusion of molecular water into the periclase, and its reaction with the host crystal during quenching. Diffusion of molecular water may be described by logDH2O (m2 s?1) = ?14.1 ± 0.4 (2σ) at 1,200 °C and 0.5 GPa, which is ~ 2 orders of magnitude slower than proton diffusion at identical P-T conditions.  相似文献   

14.
Products and kinetics of ion exchange of heterophyllosilicate minerals lomonosovite and murmanite with aqueous AgNO3 solutions under low-temperature conditions have been studied using scanning electron microscopy, electron microprobe analysis, single-crystal X-ray diffraction, infrared spectroscopy, 23Na nuclear magnetic resonance spectroscopy and dynamic calorimetry. Both minerals show strong affinity for silver in cation exchange. Simplified formulae of Ag-exchanged forms of murmanite and lomonosovite are (Ag3.0Ca0.5Na0.5) (Ti,Nb,Mn,Fe)3.7?4 (Si2O7)2O4·4(H2O,OH) and (Ag8.2Na1.2Ca0.3) (Ti,Nb,Mn,Fe)3.9?4 (Si2O7)2 (PO4)1.9O4·xH2O, respectively. The reaction of ion exchange for murmanite follows the first-order kinetic model up to ca. 70–80 % conversion. The rate of the process is described by the equation k(h?1) = 107.64±0.60 exp[?(12.2 ± 0.9)·103/RT]. The average heat release value in the temperature range 39.4–72 °C is 230 J g?1. The cation exchange is limited by processes in solid state, most probably binding of silver.  相似文献   

15.
Aluminium smelters are major sources of F emission to the environment. We studied, in laboratory experiments, the sorption and desorption of fluoride on organic and mineral horizons of soils located within 2 km from one of these factories, situated in the northern coast of Galicia (NW Spain). The soils, developed from granite, are acid (pH H2O 3.9–5.5), rich in organic matter (4–16 % C in the A horizon) and most A horizons have high Al saturation in the exchange complex. All samples showed a notable F sorption, between 1,066 and 1,589 mg kg?1, after adding 200 mg F L?1, which accounts for 53–80 % of F added. The sorption was slightly higher in the A horizons than in the respective organic horizons (differences of up to 194 mg kg?1). The fluoride sorption upon addition of 200 mg F L?1 correlated significantly (p < 0.05) with soil pH in water (r = ?0.77), iron extracted by acid ammonium oxalate (r = 0.68), aluminium plus iron extracted by acid ammonium oxalate (r = 0.63), exchange aluminium (r = 0.52) and clay percentage in soil (r = 0.76). The F sorption fitted to both Langmuir and Freundlich models. Desorbed F accounted for only 12–22 % of sorbed fluoride and correlated (p < 0.05) negatively with non-crystalline (extracted by acid ammonium oxalate) Fe (r = ?0.51) and clay content (r = ?0.74) and positively with organic matter (r = 0.69) and with the effective cation exchange capacity of the soil (r = 0.50).  相似文献   

16.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

17.
Adsorption of cobalt on synthetic hydrous manganese dioxide was studied as a function of pH and surface area in NaCl solutions and solutions containing sea water concentrations of Na, Ca and Mg. The amount of cobalt adsorbed increased sharply at pH 6, a significantly lower pH than that required for significant hydrolysis of Co(II) or precipitation of Co(OH)2(S) in bulk solution. Sea water concentrations of Na, Ca and Mg have little effect on adsorption until the cobalt concentration is less than 10?7 M.Micro-electrophoresis experiments from 1 × 10?3 M to 1 × 10?5 M to Co(II) show three charge reversals. The first is the pH of zero point charge of hydrous manganese dioxide. The second correlates well with the abrupt increase in adsorption at pH 6 and may reflect both specific adsorption of Co(II) and precipitation of Co(OH)2 on the surface. The third agrees well with literature values for the pH of zero point of charge of Co(OH)2.An adsorption isotherm was constructed for cobalt and these data were used to test the hypothesis that the enrichment of cobalt in the suspended matter of the Black Sea is due to adsorption of cobalt from sea water by manganese dioxide. The calculations indicate that adsorption is a feasible explanation for this example.  相似文献   

18.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   

19.
Calcium-free carbonate cancrinite with formula unit Na8.28[Al5.93Si6.07O24](CO3)0.93(OH)0.49·3.64H2O (CAN) has been synthesized under hydrothermal conditions. The product has been characterized by the methods of scanning electronic microscopy and energy dispersive X-ray analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis with FTIR of evolved gases (TGA–FTIR), and X-ray powder diffraction. The heat capacity of CAN has been measured from 6 to 259 K via low-temperature adiabatic calorimetry. A linear combination of Einstein functions has been used to approximate the obtained data on the heat capacity. The thermal contributions to the entropy and enthalpy of CAN in the temperature range 0–300 K have been calculated from these data. The heat capacity and third-law absolute entropy of CAN at 298.15 K are 1,047 ± 30 and 1,057 ± 35 J mol?1 K?1, respectively. High-temperature oxide-melt solution calorimetry has been used to determine the enthalpy of formation from elements of CAN at 298.15 K; the value equals ?14,684 ± 50 kJ mol?1. The Gibbs energy of formation from elements at 298.15 K has been calculated and totaled ?13,690 ± 51 kJ mol?1.  相似文献   

20.
The hydrogeochemistry and isotope geochemistry of groundwater from 85 wells in fractured dolomite aquifers of Central Slovenia were investigated. This groundwater represents waters strongly influenced by chemical weathering of dolomite with an average of δ13CCARB value of +2.2 ‰. The major groundwater geochemical composition is HCO3 ? > Ca2+ > Mg2+. Several differences in hydrogeochemical properties among the classes of dolomites were observed when they were divided based on their age and sedimentological properties, with a clear distinction of pure dolomites exhibiting high Mg2+/Ca2+ ratios and low Na+, K+ and Si values. Trace element and nutrient concentrations (SO4 2?, NO3 ?) were low, implying that karstic and fractured dolomite aquifers are of good quality to be used as tap water. Groundwater was generally slightly oversaturated with respect to calcite and dolomite, and dissolved CO2 was up to 46 times supersaturated relative to the atmosphere. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium ranged from ?10.3 to ?8.4 ‰, from ?68.5 to ?52.7 ‰ and from 3.5 TU to 10.5 TU, respectively. δ18O and δD values fell between the GMWL (Global Meteoric Water Line) and the MMWL (Mediterranean Meteoric Water Line) and indicate recharge from precipitation with little evaporation. The tritium activity in groundwater suggests that groundwater is generally younger than 50 years. δ13CDIC values ranged from ?14.6 to ?9.3 ‰ and indicated groundwater with a contribution of degraded organic matter/dissolved inorganic carbon in the aquifer. The mass balances for groundwater interacting with carbonate rocks suggested that carbonate dissolution contributes from 43.7 to 65.4 % and degradation of organic matter from 34.6 to 56.3 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号