首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water fluxes in highly impounded regions are heavily dependent on reservoir properties. However, for large and remote areas, this information is often unavailable. In this study, the geometry and volume of small surface reservoirs in the semi-arid region of Brazil were estimated using terrain and shape attributes extracted by remote sensing. Regression models and data classification were used to predict the volumes, at different water stages, of 312 reservoirs for which topographic information is available. The power function used to describe the reservoir shapes tends to overestimate the volumes; therefore, a modified shape equation was proposed. Among the methods tested, four were recommended based on performance and simplicity, for which the mean absolute percentage errors varied from 24 to 39%, in contrast to the 94% error achieved with the traditional method. Despite the challenge of precisely deriving the flooded areas of reservoirs, water management in highly reservoir-dense environments should benefit from volume prediction based on remote sensing.  相似文献   

2.
朱珍香  杨军 《湖泊科学》2018,30(2):567-580
水库是福建重要的水资源.通过2013-2015年遥感影像结合Google Earth和天地图提取福建水库3353座,分布在81个县区,总面积647.51 km2,约占全省土地面积的0.5%;其中面积≤1 km2水库3248座,总面积197.16 km2,面积1 km2水库105座,总面积450.35 km2.基于经验公式估算总蓄水量188.18亿m3,其中小型水库3078座(91.80%),蓄水总量37.06亿m3(19.69%),大中型水库275座(8.20%),蓄水总量151.12亿m3(80.31%).从空间分布格局来看,福建水库水资源空间分布不均,沿海六市水库密度大于三个内陆市,大中型水库主要分布于福建西北部,蓄水量呈现西北多、东南少的特点.单位陆地面积水库数量沿海城市县区均多于内陆,而单位人口水库数量则相反;单位面积水库蓄水量沿海与内陆差异不大,而人均蓄水量则沿海大部分县区远小于内陆.仅以水库作为供水水源,不能满足沿海地区用水,但内陆地区供水充足.水库蓄水对河流水体的平均滞留时间为0.053~0.341 a,除晋江流域受水库蓄水强烈影响外,其他流域受水库中等程度影响.  相似文献   

3.
The ‘range of variability approach’ (RVA) and mapping technique are used to investigate the spatial variability of hydrologic alterations (HA) due to dam construction along the middle and lower Yellow River, China, over the past five decades. The impacts of climate variability on hydrological process have been removed during wet and dry periods and the focus is on the impacts of human activities, such as dam construction, on hydrological processes. Results indicate the following: (1) The impacts of the Sanmenxia reservoir on the hydrologic alteration are relatively slight with a mean HA value of 0·48, ranking in the last place among the four large reservoirs. (2) Xiaolangdi reservoir has significantly changed the natural flow regime downstream with mean HA value of 0·56, ranking it in first place among the large reservoirs. (3) The results of ranked median degrees of 33 hydrologic alteration indicators for 10 stations in the Yellow River show that the hydrologic alteration of Huayuankou ranks the highest among 10 stream gauges. (4) Impacts of reservoirs on hydrological processes downstream of the dams are closely associated with the regulating activities of the reservoirs. At the same time, alterations of streamflow regimes resulting from climatic changes (e.g. precipitation variability) make the situation more complicated and more hydrological observations will be necessary for further analysis. The results of the current study will be greatly beneficial to the regional water resources management and restoration of eco‐environmental systems in the middle and lower Yellow River characterized by intensified dam construction under a changing environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Methane emissions from hydroelectric reservoirs can comprise a considerable portion of anthropogenic methane. However, lack of data on CH4 emissions in different geographical regions and high spatial‐temporal variability in the emission rates of reservoirs has led to uncertainties regarding regional emission estimates of CH4. In the subtropical plateau climate region, we used the Ertan hydroelectric reservoir as a study area. The CH4 flux at the air‐water interface was assessed by floating chambers and factors influencing emissions, including the distance from the dam, water depth, seasonal variation in wet and dry season, air‐water temperature gradient and wind speed, and was also studied through a year‐long systematic sampling and monitoring experiment. The results showed that the surface of the reservoir was a source of CH4 during the sampling period and the annual average CH4 flux was 2·80 ± 1·52 mg m?2 d?1. CH4 flux (and its variation) was higher in the shallow water areas than in the deep‐water areas. CH4 flux near the dam was significantly higher than that of other locations farther from the dam in the dry season. The seasonal variations of CH4 emission in wet and dry seasons were minor and significant diurnal variations were observed in wet and dry seasons. Exponential relationships between the CH4 flux and air‐water temperature gradient were found. Air‐water temperature gradient was an important factor influencing diurnal variations of CH4 flux in the Ertan hydroelectric reservoir. These results indicate that systematic sampling is needed to better estimate CH4 flux through coverage of the spatial variation of different water depths, measuring‐point distance from the dam, seasonal variation in wet and dry seasons and changes in climate factors (such as air‐water temperature gradient). Our results also provide a fundamental parameter for CH4 emission estimation of global reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Soil loss, fluvial erosion, and sedimentation are major problems in semi‐arid environments due to the high associated costs of decreasing services such as provisioning and regulating water resources. The objective of this research is to analyse sediment yield in a mountainous semi‐arid basin, paying special attention to the sources of sediment, the associated uncertainties, and the transport processes involved. The segregation hypothesis along a reservoir of the sediment coming from hillslopes or fluvial systems is also evaluated. For this purpose, bottom‐set and deltaic deposits of a reservoir (110 hm3 ) in southern Spain have been measured and compared with basin erosion and fluvial transport monitoring over a 12‐year period. The volume of sediment stored at the bottomset of the reservoir shows a relative match with parametric predictions based on the Revised Universal Soil Loss Equation/Modified Universal Soil Loss Equation hillslope models and rating curves, estimated as being between 7 and 13 t·ha?1·year?1. Similarly, the measured volume of deltaic deposit fits the average value of stochastic simulations from different bedload transport equations. These contributions represent 50–65% of the total volume measured regarding suspended sediment inputs, way above that described in previous works. This highlights the importance of considering bedload when estimating the useful life of reservoirs in semi‐arid environments. The major differences in sediment grain size between hillslopes and river systems, and the size fractions measured along the reservoir, support the assertion of segregation hypothesis. Nonetheless, based on the processes observed and the uncertainty related to modelling, that assertion has to be taken with caution. At basin scale, a specific sediment yield of between 19 and 24 t·ha?1·year?1 has been estimated, which includes hillslopes and fluvial contributions. This rate is in the range of sediment yield reported for Mediterranean mountain areas of a torrential character. The pulse‐like nature of the system and the spatial heterogeneity of fluvial and hillslope erosion rates points out the importance of considering mid to long‐term and process‐based approaches and emphasizes the limitations of annual estimations for management purposes.  相似文献   

7.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This study presents a method to estimate streamflow in rivers regulated by lakes or reservoirs using synthetic satellite remote sensing data. To illustrate the approach, the new reservoir routing method is integrated into the Hillslope River Routing model, and a case study is presented for the highly regulated river in the Cumberland River basin (46,400 km2). The study period is April–May 2000, which contains a significant flood event that occurred in 1–2 May 2000. The model is shown to capture storage/release characterises in eight reservoirs with a mean normalized root mean square error (NRMSE) of 20% for entire simulation period and 27% for the May flood event. These errors are 69 and 75%, respectively, less than the NRMSE if reservoirs are not included in the model. Given the limitations of satellite missions, the impacts of the revisit cycles and operational periods are quantified. We used 26 observation sets of satellite altimetry over Cumberland River basin that are generated by considering both repeat cycles and satellite operation periods. For the revisit cycles, increasing the interval of repeat cycle leads to a corresponding increase of mean NRMSE from 27 to 59% as a result of sampling fewer flood events and smoothing of the change in storage signal as a result of longer intervals between visits. For the operation periods, the impact of data periods is limited because of the strong seasonal pattern of reservoir operations. Overall, the results suggest that the generalized routing model derived from reservoir stage observations can be used to simulate reservoir operating conditions, which can be used in forecasting hydrologic impacts of land cover or climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Lei Wang  Jaehyung Yu 《水文研究》2012,26(19):2973-2984
The construction of stormwater detention basins is a best management practice to effectively control floods, to provide additional surface storage for excess floodwater and to compensate for the adverse effects of urban development. Traditional field‐based levelling survey methods are very time consuming and subject to human‐induced arbitrariness and error. This article presents an approach to modelling detention basins measured from light detection and ranging remote sensing data. A case study is illustrated by using the White Oak Bayou watershed of Harris County, Texas. The storage–stage curve obtained from the volumetric analysis is used in a modified detention basins routing model, which was developed by adding the weir structure control to the traditional hydrologic reservoir routing equations. The model simulation showed that the peak flow of the synthetic 100‐year reoccurrence event was effectively reduced and delayed by the detention basins. The comparison with the simulation results from the traditional reservoir routing model suggested that previous studies using the reservoir routing model were likely to underestimate the flood reduction effect of detention basins. The sensitivity analysis of the parameters showed that the detention basin design and evaluation should pay more attention on the weir height and river channel's roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Considering the highly stochastic nature of the hydrological process, wavelet transform was used to analyse the characteristics, trends and causes of variations in annual run‐off (1917–2006) into Tianjin in the Haihe River Basin. Run‐off was steadily declining due to climate change and human activity and a significant decrease in run‐off along the time series was discovered around the 1960s; however, the change in precipitation was insignificant. The time series of run‐off was heavily influenced by a nonlinear feature and mainly influenced by the natural climate before the 1960s, but after the 1970s the change remained steady, with an annual run‐off that fluctuated between 0·2 and 48·4 mm and was maintained at a low level (9·3 mm). The main cause of the run‐off decline in the 1960s was that more than 1900 reservoirs with a total holding capacity of up to 83 mm were constructed in the upper and middle reaches, which controlled 85% of the total run‐off. These projects have played an active role in the reservoir action and water conservation since they were implemented. At the beginning of the 1980s, the demand for water resources increased with the rapid growth of the population and the large‐scale development of industry and agriculture in the Haihe River Basin, which caused a reduction in run‐off into Tianjin. Overall, the hydrological effects of water storage projects regulating river run‐off were beneficial to flood control, but might cause a serious reduction in river run‐off into Tianjin and the lower reaches of the basin. In addition, a decrease in annual precipitation and changes in temperature in Northern China have also had an adverse effect on natural run‐off, which caused a greater decline in water resources, but this did not have a powerful influence on the overall decline in the run‐off. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
An analysis of the hydrological effects of vegetation changes in the Columbia River basin over the last century was performed using two land cover scenarios. The first was a reconstruction of historical land cover vegetation, c. 1900, as estimated by the federal Interior Columbia Basin Ecosystem Management Project (ICBEMP). The second was current land cover as estimated from remote sensing data for 1990. Simulations were performed using the variable infiltration capacity (VIC) hydrological model, applied at one‐quarter degree spatial resolution (approximately 500 km2 grid cell area) using hydrometeorological data for a 10 year period starting in 1979, and the 1900 and current vegetation scenarios. The model represents surface hydrological fluxes and state variables, including snow accumulation and ablation, evapotranspiration, soil moisture and runoff production. Simulated daily hydrographs of naturalized streamflow (reservoir effects removed) were aggregated to monthly totals and compared for nine selected sub‐basins. The results show that, hydrologically, the most important vegetation‐related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime maximum snow accumulations, and hence snow available for runoff during the spring melt season, have tended to increase, and evapotranspiration has decreased. The reverse has occurred in areas where fire suppression has tended to increase vegetation maturity, although the logging effect appears to dominate for most of the sub‐basins evaluated. Predicted streamflow changes were largest in the Mica and Corralin sub‐basins in the northern and eastern headwaters region; in the Priest Rapids sub‐basin, which drains the east slopes of the Cascade Mountains; and in the Ice Harbor sub‐basin, which receives flows primarily from the Salmon and Clearwater Rivers of Idaho and western Montana. For these sub‐basins, annual average increases in runoff ranged from 4·2 to 10·7% and decreases in evapotranspiration ranged from 3·1 to 12·1%. In comparison with previous studies of individual, smaller sized watersheds, the modelling approach used in this study provides predictions of hydrological fluxes that are spatially continuous throughout the interior Columbia River basin. It thus provides a broad‐scale framework for assessing the vulnerability of watersheds to altered streamflow regimes attributable to changes in land cover that occur over large geographical areas and long time‐frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The assessment of sediment yield from reservoir siltation requires knowledge of the reservoir's sediment trap efficiency (TE). Widely used approaches for the estimation of the long‐term mean TE rely on the ratio of the reservoir's storage capacity (C) to its catchment size (A) or mean annual inflow (I). These approaches have been developed from a limited number of reservoirs (N ≤ 40), most of them located in temperate climate regions. Their general applicability to reservoirs receiving highly variable runoff such as in semi‐arid areas has been questioned. Here, we examine the effect of ephemeral inflow on the TE of 10 small (≤ 280 × 103 m3), intermittently dry reservoirs located in the Kruger National Park. Fieldwork was conducted to determine the storage capacity of the reservoir basins. The frequency and magnitude of spillage events was simulated with the daily time step Pitman rainfall–runoff model. Different runoff scenarios were established to cope with uncertainties arising from the lack of runoff records and imperfect input data. Scenarios for the relationship between water and sediment discharge were created based on sediment rating curves. Taking into account uncertainties in hydrological modelling, uncertainties of mean TE estimates, calculated from all scenarios (N = 9), are moderate, ranging from ±6 to ±11% at the 95% confidence level. By comparison, estimating TE from the storage capacity to catchment area (C/A) ratio induces high uncertainty (ranges of 35 to 65%), but this uncertainty can be confined (15 to 33%) when the latter approach is combined with hydrological modelling. Established methods relying on the storage capacity to mean annual inflow (C/I) ratio most probably lead to an overestimation of the TE for the investigated reservoirs. The approach presented here may be used instead to estimate the TE of small, intermittently dry reservoirs in semi‐arid climate regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
随着经济社会的快速发展和进步,我国湖库水体富营养化情况越来越严重.卫星遥感在水体营养状态监测方面具有重要潜力,但基于卫星遥感的全国范围内湖库水体营养状态监测和分析方面还鲜有研究.本文基于2018夏季的MO-DIS卫星遥感数据生产FUI指数产品,构建基于FUI水色指数的湖库营养状态评价方法,监测全国范围内144个重点湖库...  相似文献   

15.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

17.
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In the Brazilian semi-arid region, thousands of small dams have been built over time to enhance water availability, accumulating water and hydraulic energy at high altitudes. Simulations were performed in this study to assess how the arrangement of reservoirs impacts on the power demand for water distribution in the Banabuiú River Basin (19?800 km2), Brazil. The power required to pump water from 1405 reservoirs to all districts with diffuse demands is 6.5 GWh/year, whereas in the scenario with only the 12 larger strategic reservoirs, the power demand reached 45.3 GWh/year. Alone, the largest reservoir in the basin can supply water to all districts. Nonetheless, in that scenario, the power demand would reach 195 GWh/year, which is 30 times the power required in the real reservoir arrangement. Thus, decentralization by small reservoirs not only promotes more democratic access to water, but also increases energy efficiency by storing it at higher altitudes and closer to the diffuse demands.  相似文献   

20.
我国水库诱发地震研究   总被引:5,自引:0,他引:5  
杜运连  王洪涛  袁丽文 《地震》2008,28(4):39-51
通过对我国已发生诱发地震的29座水库资料整理, 分析其库容、 坝高对诱发地震的影响以及蓄水时间长短对诱发地震的发生概率和震级的影响关系, 提出水库地震应分为二类或二个阶段。 对福建及邻近地区的18座大中型水库进行统计, 并对福建水口、 棉花滩、 街面水库及珊溪水库的多个方面进行了统计和综合类比分析, 提出了水口水库和浙江珊溪水库发生诱发地震的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号