首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests.This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force.Due to their robustness and portability,individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories.Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages.To conduct a substructure online hybrid test,an extensible framework is developed,which is equipped with a generalized interface to encapsulate each substructure.Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework,simply interfaced with the boundary displacements and forces.A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated.An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments.A series of online hybrid tests are introduced,and the portability,flexibility,and extensibility of the online hybrid test system are demonstrated.  相似文献   

2.
A hybrid numerical and experimental simulation to collapse was conducted on a one‐half scale moment‐resisting frame building with two experimental substructures at different locations. An extensible hybrid test framework was used that adopts a generalized interface to encapsulate each numerical or tested substructure, through which only boundary displacements and forces are exchanged. Equilibrium and compatibility between substructures are enforced by an iterative quasi‐Newton procedure, while adopting a predictor‐and‐corrector method to avoid loading reversals on physically tested substructures. To overcome difficulties in controlling stiff axial and rotational deformations at the boundaries, the flexible test scheme employs either open‐loop or closed‐loop control at the boundaries: enforcing either compatibility or equilibrium, or both requirements at critical boundaries. The effectiveness of the extensible framework and its capability to simulate structural behavior through collapse is demonstrated by a geographically distributed test that reproduced the collapse behavior of a four‐story, two‐bay, steel moment frame previously tested on an earthquake simulator. A comparison of both experiments highlights the viability of the hybrid test as an effective tool for the performance evaluation of structural systems from the onset of damage through collapse. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a variation on the component mode technique for the dynamic substructuring of large‐scale structural analysis of building and bridge frames. The principal innovation of the proposed method of dynamic reduction is that the resulting mass matrix of the reduced substructures remains diagonal. As in the component mode technique, the reduction is accomplished by transforming the degrees of freedom in the substructure using boundary shapes and internal shapes. The diagonal mass matrix is achieved by orthogonalization of the boundary shapes to the internal shapes, and a selective row‐by‐row summation of the mass matrix into the diagonal entry (where off‐diagonal terms are unavoidable). To aid in recovering the accuracy of the rigid‐body inertias that is lost in the diagonalization process, additional pseudo‐rigid‐body‐mode shapes are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A new Internet online hybrid test system, designated the ‘peer‐to‐peer (P2P) Internet online hybrid test system’, is proposed. In the system, the simulated structure is divided into multiple substructures, and each substructure is analysed numerically or tested physically in parallel at geographically distributed locations. The equations of motion are not formulated for the entire structure but for each substructure separately. Substructures are treated as highly independent systems, and only standard I/O, i.e. displacements and forces at the boundaries, are used as interfaces. A ‘Coordinator’ equipped with an iterative algorithm based on quasi‐Newton iterations is developed to achieve compatibility and equilibrium at boundaries. A test procedure, featuring two rounds of quasi‐Newton iterations and using assumed elastic stiffness, is adopted to avoid iteration for the substructure being tested physically. A fast and stable solution using a socket mechanism is developed for data exchange over the Internet. Demonstration tests applied to a base‐isolated structure was conducted, and the results are compared with an online hybrid test using the conventional test method. The results obtained from the P2P Internet hybrid test match very closely those obtained from the conventional tests. Investigations are also carried out on time consumption and control accuracy. The results show that the Internet data exchange solution using the socket mechanism is fast, and tests were completed successfully under the constructed Internet online hybrid test environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The paper is aimed at investigating the effect of foundation rigidity on dynamic stiffness for two circular foundations on a viscoelastic medium. To generate the dynamic stiffness, a substructure technique is employed. For the substructure of a viscoelastic medium, the solution for wave motion reported in Reference 11 is used. For the substructures of two flexible foundations, classical plate theory with the inertial force neglected is employed to find the displacement fields of the foundation plates subjected to the interaction stresses. Then, the continuity condition for all the substructures is imposed implicitly by using the variational principle; then with the help of the reciprocal theorem the dynamic stiffness for the two flexible foundations can be obtained. For the numerical study, the boundary condition at the rims of both foundation plates is assumed to be a hinge connection to superstructures. Some numerical investigations are performed and the effect of foundation rigidity on dynamic stiffness is examined. Some discussions and conclusions are also made.  相似文献   

7.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hybrid simulation is a powerful and cost‐effective simulation technique to evaluate structural dynamic performance. However, it is sometimes rather difficult to guarantee all the boundaries on the physical substructures, especially when the boundary conditions are very complex, due to limited laboratory resources. Lacking of boundary conditions is bound to change the stress state of the structure and eventually result in an inaccurate evaluation of structural performance. A model updating‐based online numerical simulation method is proposed in this paper to tackle the problem of incomplete boundary conditions. In the proposed method, 2 sets of finite element models with the same constitutive model are set up for the overall analysis of the whole structure and the constitutive model parameter estimation of the physical substructure, respectively. The boundary conditions are naturally satisfied because the response is calculated from the overall structural model, and the accuracy is improved as the material constitutive parameters are updated. The effectiveness of the proposed method is validated via numerical simulations and actual hybrid tests on a RC frame structure, and the results show that the negative effect of incomplete boundary conditions is almost eliminated and the accuracy of hybrid simulation is very much improved.  相似文献   

9.
A new type of external substructure to upgrade existing reinforced concrete frames (RCFs) is presented in this paper, namely, a self-centering precast bolt-connected steel-plate reinforced concrete buckling-restrained brace frame (SC-PBSPC BRBF). The upgrade mechanism and three-dimensional simulation model were analyzed based on relevant experiment validations. A quasistatic analysis and parameter study was conducted using 21 scenarios to compare the upgrading effects of the outside substructure. Afterwards, a stiffness-based design procedure was developed and modified for this external substructure, including macro-demand analysis, partial component design, and overall structural evaluations. Dynamic analyses were also performed on a frame building for five cases, before and after strengthening. The proposed numerical model reflected the precast characteristics and displayed the ideal fitting accuracy. The external assembled brace provided sufficient initial stiffness and energy dissipation capacity, while the external prestressed tendon decreased residual displacements and facilitated self-centering of the whole structure. The analyses illustrated that the damage to the existing RCF was transferred and seismic demands were significantly reduced within limitations, accompanied with greater capacity reliability. This research provides a reference for the practical applications of the external upgrading substructures in earthquake-prone areas.  相似文献   

10.
A test environment to evaluate the seismic performance of gusset plate connections intended for steel braced frames is proposed. The developed test method combines the substructuring techniques with finite element analysis methods in an on‐line hybrid scheme. Numerical substructure analysis is conducted on bracing members, while bracing connections are treated as experimental substructures. A force‐displacement combined control imposed with the aid of 2 jacks ensures physical continuity between the analysis and test. The rotational behavior of gusset plate connections subjected to large inelasticity and varying axial loading until fracture is investigated. Two gusset plate details were designed and tested to verify the efficiency of the proposed method. The test method is rational, and smooth operation is achieved. The test results revealed the advantage of the developed on‐line hybrid test method in exploring the ultimate capacity of bracing connections.  相似文献   

11.
The collapse of a one‐bay, four‐story steel moment frame is simulated in this study by the proposed peer‐to‐peer (P2P) Internet online hybrid test system. The typical beam hinging mechanism, which is ensured by a strong‐column, weak‐beam design, is reproduced. The plastic hinges at the column bases are taken as the experimental portions, while the superstructure is analyzed numerically by a general‐purpose finite element program. The implicit plastic rotations of the two column bases are treated as boundary displacements. In order to account for the complex behavior of the column bases, the P2P system is modified to use the secant stiffness during iterations, and the physical specimens are designed such that the plastic hinge behavior can be obtained. For this study, the three substructures are distributed to different locations. A large ground motion is repeatedly imposed until the column bases lose their capacity to sustain the gravity load. As a result, significant deterioration is observed at both column bases. The proposed P2P system is thus demonstrated to be able to accommodate multiple‐tested substructures involving unstable behavior. The results suggest that the P2P Internet online hybrid test system provides a reliable means of studying structures up to collapse. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Real‐time substructure testing is a novel method of testing structures under dynamic loading. The complete structure is separated into two substructures, one of which is tested physically at large scale and in real time, so that time‐dependent non‐linear behaviour of the substructure is realistically represented. The second substructure represents the surrounding structure, which is modelled numerically. In the current formulation this numerical substructure is assumed to remain linear. The two substructures interact in real‐time so that the response of the complete structure, incorporating the non‐linear behaviour of the physical substructure, is accurately represented. This paper presents several improvements to the linear numerical modelling of substructures for use in explicit time‐stepping routines for real‐time substructure testing. An extrapolation of a first‐order‐hold discretization is used which increases the accuracy of the numerical model over more direct explicit methods. Additionally, an integral form of the equation of motion is used in order to reduce the effects of noise and to take into account variations of the input over a time‐step. In order to take advantage of this integral form, interpolation of the model output is performed in order to smooth the output. The improvements are demonstrated using a series of substructure tests on a simple portal frame. While the testing approach is suitable for cases in which the physical substructure behaves non‐linearly, the results presented here are for fully linear systems. This enables comparisons to be made with analytical solutions, as well as with the results of tests based on the central difference method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
子结构地震模拟振动台混合试验原理与实现   总被引:2,自引:0,他引:2  
为了解决地震模拟振动台承载能力及台面尺寸对大型结构试验的限制,扩展振动台的功能,本文提出了子结构地震模拟振动台混合试验方法、试验过程及实时数值积分方法,并给出了试验子结构边界条件的两种模拟形式.通过一个简单框架结构的地震模拟振动台试验和子结构混合加载试验验证了该方法的可行性,并指出了该试验方法的主要技术问题.混合试验方法通过子结构技术和振动台试验相结合,解决了目前的地震模拟振动台试验和拟动力试验在设备规模和加载速度上的局限性.  相似文献   

14.
Real‐time testing with dynamic substructuring is a novel experimental technique capable of assessing the behaviour of structures subjected to dynamic loadings including earthquakes. The technique involves recreating the dynamics of the entire structure by combining an experimental test piece consisting of part of the structure with a numerical model simulating the remainder of the structure. These substructures interact in real time to emulate the behaviour of the entire structure. Time integration is the most versatile method for analysing the general case of linear and non‐linear semi‐discretized equations of motion. In this paper we propose for substructure testing, L‐stable real‐time (LSRT) compatible integrators with two and three stages derived from the Rosenbrock methods. These algorithms are unconditionally stable for uncoupled problems and entail a moderate computational cost for real‐time performance. They can also effectively deal with stiff problems, i.e. complex emulated structures for which solutions can change on a time scale that is very short compared with the interval of time integration, but where the solution of interest changes on a much longer time scale. Stability conditions of the coupled substructures are analysed by means of the zero‐stability approach, and the accuracy of the novel algorithms in the coupled case is assessed in both the unforced and forced conditions. LSRT algorithms are shown to be more competitive than popular Runge–Kutta methods in terms of stability, accuracy and ease of implementation. Numerical simulations and real‐time substructure tests are used to demonstrate the favourable properties of the proposed algorithms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Real‐time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real‐time hybrid simulation are imposed by servo‐hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real‐time hybrid simulation results. Several studies have been performed on servo‐hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real‐time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real‐time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real‐time hybrid simulation of a multiple‐DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real‐time hybrid simulation. Real‐time hybrid simulation of a two‐story four‐bay steel moment‐resisting frame with large‐scale magneto‐rheological dampers in passive‐on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A new on‐line hybrid test system incorporated with the substructuring technique is developed. In this system, a general‐purpose finite element software is employed to obtain the restoring forces of the numerical substructure accurately. The restart option is repeatedly used to accommodate the software with alternating loading and analysis characteristic of the on‐line test but without touching the source code. An eight‐storey base‐isolated structure is tested to evaluate the feasibility and effectiveness of the proposed test system. The overall structure is divided into two substructures, i.e. a superstructure to be analysed by the software and a base‐isolation layer to be tested physically. Collisions between the base‐isolation layer and the surrounding walls are considered in the test. The responses of the overall structure are reasonable, and smooth operation is achieved without any malfunction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Real‐time hybrid simulation (RTHS) has increasingly been recognized as a powerful methodology to evaluate structural components and systems under realistic operating conditions. It is a cost effective approach compared with large scale shake table testing. Furthermore, it can maximally preserve rate dependency and nonlinear characteristics of physically tested (non)structural components. Although conceptually very attractive, challenges do exist that require comprehensive validation before RTHS should be employed to assess complicated physical phenomena. One of the most important issues that governs the stability and accuracy of an RTHS is the ability to achieve synchronization of boundary conditions between the computational and physical substructures. The objective of this study is to propose and validate an H loop shaping design for actuator motion control in RTHS. Controller performance is evaluated in the laboratory using a worst‐case substructure proportioning scheme. A modular, one‐bay, one‐story steel moment resisting frame specimen is tested experimentally. Its deformation is kept within the linear range for ready comparison with the reference closed‐form solution. Both system analysis and experimental results show that the proposed H strategy can significantly improve both the stability limit and test accuracy compared with several existing strategies. Another key feature of the proposed strategy is its robust performance in terms of unmodeled dynamics and uncertainties, which inevitably exist in any physical system. This feature is essential to enhance test quality for specimens with nonlinear dynamic behavior, thus ensuring the validity of the proposed approach for more complex RTHS implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a new method, called the equivalent force control method, for solving the nonlinear equations of motion in a real‐time substructure test using an implicit time integration algorithm. The method replaces the numerical iteration in implicit integration with a force‐feedback control loop, while displacement control is retained to control the motion of an actuator. The method is formulated in such a way that it represents a unified approach that also encompasses the effective force test method. The accuracy and effectiveness of the method have been demonstrated with numerical simulations of real‐time substructure tests with physical substructures represented by spring and damper elements, respectively. The method has also been validated with actual tests in which a Magnetorheological damper was used as the physical substructure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
It has been shown that the operator‐splitting method (OSM) provides explicit and unconditionally stable solutions for quasi‐static pseudo‐dynamic substructure testing. However, the OSM provides only an explicit target displacement but not an explicit target velocity, so that it is essentially an implicit method for real‐time substructure testing (RST) when the velocity‐dependent restoring force is considered. This paper proposes a target velocity formulation based on the forward difference of the predicted displacements so as to render the OSM explicit for RST. The stability and accuracy of the resulting OSM‐RST algorithm are investigated. It is shown that the OSM‐RST is unconditionally stable so long as the non‐linear stiffness and damping are of the softening type (i.e. the tangent stiffness and damping never exceed the initial values). The stability of the OSM‐RST for structures with infinite tangent damping coefficient or stiffness is also proved, and the stability of the method for MDOF structures with a non‐classical damping matrix is demonstrated by an energy criterion. The effects of actuator delay and compensation are analysed based on the bilinear approximation of the actuator step response. Experiments on damped SDOF and MDOF structures verify that the stability of the OSM‐RST is preserved when the experimental substructure generates velocity‐dependent reaction forces, whereas the stability of real‐time substructure tests based on the central difference method is worsened by the damping of the specimen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A collaborative structural analysis (CSA) system is developed, which is capable of performing highly sophisticated structural analyses utilizing beneficial features of existing individual structural analysis programs. In the system, the global equations of motion for the overall structural system are formulated in the host program. Some substructures, whose behaviors are relatively simple, are directly solved in the host program, whereas those having complex behavior are analyzed by the station programs. A time‐consuming static condensation procedure is needed for the substructures analyzed by the station programs if adopting an implicit integration scheme. The operator splitting (OS) method, which does not require tangential stiffness, can be used to improve the system efficiency. To this end, a hybrid formulation of the Newmark‐β and OS methods is proposed, and a CSA scheme based on the hybrid formulation is developed. In the CSA system adopting the hybrid formulation, the degrees of freedom whose tangential stiffness are unavailable are formulated by the OS method, whereas the rest are still formulated by the commonly used Newmark‐β method. Using the system, analyses of a three‐story‐braced steel moment‐resisting frame are conducted. In the analyses, the column bases are analyzed using the commercial finite element method software ABAQUS, and the remaining structural elements are analyzed using a frame analysis program called NETLYS. Results suggest that the hybrid formulation is very effective for the CSA system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号