首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

2.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

3.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

4.
This study investigated the performance of UV light active TiO2 and UV–visible light active WO3/TiO2 nanoparticles as air purifying materials that can be potentially applied to urban green infrastructures such as rain gardens and pervious pavements. Using a laboratory-scale continuous gas flow photoreactor, the removal efficiency of gaseous nitrogen oxide (NO x ) by two different photocatalytic nanoparticles coated on natural zeolites and pervious concrete blocks was evaluated. The results showed that the TiO2- and WO3/TiO2-coated zeolites are excellent photoactive materials providing enhanced air purification function (~95% removal efficiency of NO x ) under UV and UV–visible light irradiation, respectively. In contrast, both of the TiO2- and WO3/TiO2-coated pervious concrete blocks showed a measurable NO x removal (~60%) only under UV irradiation, whereas the visible light activity of the WO3/TiO2-coated concrete block was significantly reduced (~20%) mainly due to the decrease in the photocatalytic reaction sites for visible light. This study revealed the potential utility of photocatalytic nanoparticles in improving urban air quality, in the form of the surface component of various urban infrastructures.  相似文献   

5.
Using a diamond-anvil cell and synchrotron X-ray diffraction, the compressional behavior of a synthetic qandilite Mg2.00(1)Ti1.00(1)O4 has been investigated up to about 14.9 GPa at 300 K. The pressure–volume data fitted to the third-order Birch–Murnaghan equation of state yield an isothermal bulk modulus (K T0) of 175(5) GPa, with its first derivative \(K_{T0}^{{\prime }}\) attaining 3.5(7). If \(K_{T0}^{{\prime }}\) is fixed as 4, the K T0 value is 172(1) GPa. This value is substantially larger than the value of the adiabatic bulk modulus (K S0) previously determined by an ultrasonic pulse echo method (152(7) GPa; Liebermann et al. in Geophys J Int 50:553–586, 1977), but in general agreement with the K T0 empirically estimated on the basis of crystal chemical systematics (169 GPa; Hazen and Yang in Am Miner 84:1956–1960, 1999). Compared to the K T0 values of the ulvöspinel (Fe2TiO4; ~148(4) GPa with \(K_{T0}^{{\prime }} = 4\)) and the ringwoodite solid solutions along the Mg2SiO4–Fe2SiO4 join, our finding suggests that the substitution of Mg2+ for Fe2+ on the T sites of the 4–2 spinels can have more significant effect on the K T0 than that on the M sites.  相似文献   

6.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

7.
Ab initio calculations of thermo-elastic properties of beryl (Al4Be6Si12O36) have been carried out at the hybrid HF/DFT level by using the B3LYP and WC1LYP Hamiltonians. Static geometries and vibrational frequencies were calculated at different values of the unit cell volume to get static pressure and mode-γ Grüneisen’s parameters. Zero point and thermal pressures were calculated by following a standard statistical-thermodynamics approach, within the limit of the quasi-harmonic approximation, and added to the static pressure at each volume, to get the total pressure (P) as a function of both temperature (T) and cell volume (V). The resulting P(V, T) curves were fitted by appropriate EoS’, to get bulk modulus (K 0) and its derivative (K′), at different temperatures. The calculation successfully reproduced the available experimental data concerning compressibility at room temperature (the WC1LYP Hamiltonian provided K 0 and K′ values of 180.2 Gpa and 4.0, respectively) and the low values observed for the thermal expansion coefficient. A zone-centre soft mode \( P6/mcc \to P\bar{1} \) phase transition was predicted to occur at a pressure of about 14 GPa; the reduction of the frequency of the soft vibrational mode, as the pressure is increased, and the similar behaviour of the majority of the low-frequency modes, provided an explanation of the thermal behaviour of the crystal, which is consistent with the RUM model (Rigid Unit Model; Dove et al. in Miner Mag 59:629–639, 1995), where the negative contribution to thermal expansion is ascribed to a geometric effect connected to the tilting of rigid polyhedra in framework silicates.  相似文献   

8.
Fine-granular (<0.1 mm) flattened colorless transparent crystals of ivsite form white aggregates. The empirical formula (Na2.793Cu0.056)2.849HS2.016O8 is close to the ideal Na3H(SO4)2. The structure was refined up to R = 0.040. Ivsite has a monoclinic symmetry, P21/c, a = 8.655(1) Å, b = 9.652(1) Å, c = 9.147(1) Å, β = 108.76(1)°, V = 723.61(1) Å3, Z = 4. Na atoms occur at six- and seven-fold sites (NaO6 and NaO7); S atoms, in isolated SO4 tetrahedrons; these polyhedrons form a three-dimensional framework. The diagnostic lines of powder diffraction patterns (d[Å]–Ihkl) are 4.010–53–12-1, 3.949–87–012, 3.768–100–210, 3.610–21–20-2, 3.022–22–031, 2.891–42–22-2, 2.764–49–31-1, and 2.732–70–13-1.  相似文献   

9.
The crystal structure of a new compound [Mg(H2O)4(SeO4)]2(H2O) (monoclinic, P2 1/a, a = 7.2549(12), b = 20.059(5), c = 10.3934(17) Å, β = 101.989(13), V = 1479.5(5) Å3) has been solved by direct methods and refined to R 1 = 0.059 for 2577 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure consists of [Mg(H2O)4(SeO4)]0 chains formed by alternating corner-sharing Mg octahedrons and (SeO4)2? tetrahedrons. O atoms of Mg octahedrons that are shared with selenate tetrahedrons are in a trans orientation. The heteropoly-hedral octahedral-tetrahedral chains are parallel to the c axis and undulate within the (010) plane. The adjacent chains are linked by hydrogen bonds involving H2O molecules not bound with M2+ cations.  相似文献   

10.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

11.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

12.
The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9 at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after the reversible phase transition despite an anisotropic contraction of the unit cell and a volume decrease of 4.2%. The crystal structure of the high pressure phase, β-Pb6Bi2S9, is solved in Pna2 1 (a = 25.302(7) Å, b = 30.819(9) Å, c = 4.0640(13) Å, Z = 8) from synchrotron data at 5.06 GPa. This structure consists of two types of moduli with SnS/TlI-archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).  相似文献   

13.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

14.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

15.
A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high-T X-ray powder diffraction, the combined PT effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the “availability test” (“AVA test”) protocol. A series of additional investigations were performed by WDS–electron microprobe analysis in order to describe the PT-induced modification of the material texture, and to chemically characterize the starting material and the run products. The “AVA tests” of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to-Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., dP/dT > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, PT phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as potential solid hosts for 137Cs γ-radiation source in sterilization applications. More in general, even the CsAlSi5O12-rich aggregate obtained by a clinoptilolite-rich epiclastic rock appears to be suitable for this type of utilizations.  相似文献   

16.
A new potassium uranyl selenate compound K(UO2)(SeO4)(OH)(H2O) has been synthesized for the first time using the technique of evaporation from water solution. Its crystal structure has been solved by direct methods (monoclinic, P21/c,a = 8.0413(9) Å, b = 8.0362(9) Å, c = 11.6032(14) Å, β = 106.925(2)°, V = 717.34(14) Å3) and refined to R 1 = 0.0319 (wR 2 = 0.0824) for 1285 reflections with |F 0| > 4σ F . The structure consists of [(UO2(SeO4)(OH)(H2O)]? chains extending along axis b. In the chains, the uranyl pentagonal bipyramids are linked via bridged hydroxyl anions and tetrahedral oxoanions [SeO4]2?. Potassium ions are situated between these chains. No chains of that type have been observed in uranyl compounds earlier, but they had been detected in the structures of butlerite, parabutlerite, uklonskovite, fibroferrite, and a number of synthetic compounds.  相似文献   

17.
Crystals of lead oxychloride Pb13O10Cl6 have been synthesized on the basis of high-temperature solid-state reactions. The Pb13O10Cl6 structure was studied using X-ray single-crystal diffraction analysis. The compound is monoclinic, and the space group is C2/c; the unit-cell dimensions are a = 16.1699(14), b = 7.0086(6), c = 23.578(2) Å, β = 97.75°, and V = 2647.6(4) Å3. The structure has been solved by direct methods and refined to R 1 = 0.0505 for 2671 observed unique reflections. The structure is a 3D framework consisting of OPb4 tetrahedrons. Chlorine atoms are located in the framework channels. The structure contains seven symmetrically independent Pb atoms, which are coordinated by 2 to 4 O2? and 2 to 4 Cl? anions. The synthesized compound is compared with other natural and synthetic lead oxyhalides.  相似文献   

18.
Hydroxylborite, a new mineral species, an analogue of fluoborite with OH > F, has been found at the Titovsky deposit (57°41′N, 125°22′E), the Chersky Range, Dogdo Basin, Sakha-Yakutia Republic, Russia. Prismatic crystals of the new mineral are dominated by the {10\(\overline 1 \)0} faces without distinct end forms and reach (1?1.5) × (0.1?0.2) mm in size. Radial aggregates of such crystals occur in the mineralized marble adjacent to the boron ore (suanite-kotoite-ludwigite). Calcite, dolomite, Mg-rich ludwigite, kotoite, szaibelyite, clinohumite, magnetite, serpentine, and chlorite are associated minerals. Hydroxylborite is transparent colorless, with a white streak and vitreous luster. The new mineral is brittle. The Mohs’ hardness is 3.5. The cleavage is imperfect on {0001}. The density measured with equilibration in heavy liquids is 2.89(1) g/cm3; the calculated density is 2.872 g/cm3. The wave numbers of the absorption bands in the IR spectrum of hydroxylborite are (cm?1; sh is shoulder): 3668, 1233, 824, 742, 630sh, 555sh, 450sh, and 407. The new mineral is optically uniaxial, negative, ω = 1.566(1), and ε = 1.531(1). The chemical composition (electron microprobe, H2O measured with the Penfield method, wt %) is 18.43 B2O3, 65.71 MgO, 10.23 F, 9.73 H2O, 4.31-O = F2, where the total is 99.79. The empirical formula calculated on the basis of 6 anions pfu is as follows: Mg3.03B0.98[(OH)2.00F1.00]O3.00. Hydroxylborite is hexagonal, and the space group is P63/m. The unit-cell dimensions are: a = 8.912(8) Å, c = 3.112(4) Å, V = 214.05(26) Å3, and Z = 2. The strongest reflections in the X-ray powder pattern [d, Å (I, %)(hkil)] are: 7.69(52)(01\(\overline 1 \)0), 4.45(82)(11\(\overline 2 \)0), 2.573(65)(03\(\overline 3 \)0), 2.422(100)(02\(\overline 2 \)1), and 2.128(60)(12\(\overline 3 \)1). The compatibility index 1 ? (K p/K c) is 0.038 (excellent) for the calculated density and 0.044 (good) for the measured density. The type material of hydroxylborite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow (inventory number 91968) and the Geological Museum of the All-Russia Institute of Mineral Resources, Moscow (inventory number M-1663).  相似文献   

19.
Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1–0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064–1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0–7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm-R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [d, Å, (I in 5-number scale)(hkl)] are 3.28 (5) (20\(\bar 2\)); 2.88 (5) (11\(\bar 2\)); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42\(\bar 2\)); 1.633 (5) (31\(\bar 4\)); 1.446 (4) (33\(\bar 2\)); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V 1.70 3+ Cr0.30)2.0(V 0.59 4+ Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

20.
The liquidus water content of a haplogranite melt at high pressure (P) and temperature (T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700–1000 °C, 0.6–1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston–cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935–985, 875–900, 775–800, 725–775, and 650–675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is \(T = - 0.0995 w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 3} + 5.0242w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 2} - 88.183 w_{{{\text{H}}_{ 2} {\text{O}}}} + 1171.0\) for \(0 \le w_{{{\text{H}}_{ 2} {\text{O}}}} \le 17\) wt% and \(T\) is in °C. We present a revised \(P - T\) diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on the haplogranite system. For lower H2O (<5.8 wt%) and higher temperature, our results plot on the high end of the extrapolated water contents at liquidus minima when compared to the previous estimates. As a consequence, amounts of metaluminous granites that can be produced from lower crustal biotite–amphibole gneisses by dehydration melting are more restricted than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号