首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyhydroxyalkanoates (PHAs) are an important class of biodegradable polymers synthesized by a few bacteria under nutrient-limiting conditions. In this study, the lipase-catalysed degradation of PHA synthesized by Enterobacter sp. was monitored. For this, the lipase-encoding gene from Bacillus subtilis DI2 was PCR-amplified, cloned into a T vector system and sequenced. It was expressed in Escherichia coli DH5α cells, the recombinant enzyme was purified 24.25-fold, and its molecular weight was determined to be around 28 kDa. When PHA biodegradation studies were carried out with this enzyme, gel permeation chromatography showed 21.3 and 28.3 % molecular weight decrease and weight loss, respectively. Further, scanning electron micrographs revealed alterations in polymer surface morphology. Changes in molecular vibrations were noticed in the FTIR spectra. When the chemical shifts in NMR spectra were studied, a steep reduction in area under the peak at 1.57 ppm was observed. In the heating range of 30–930 °C employed during thermogravimetry analysis, the degraded sample showed a total of 45.82 % weight loss, as against 18.89 % for the native sample. The melting temperature (T m) of the polymer was also brought down from 126.22 to 118.18 °C, as inferred from differential scanning calorimetry. Lipase-catalysed chain scission reactions could thus be used to generate low molecular weight functional biopolymers with wide-ranging pharmaceutical applications, such as in sustained drug release.  相似文献   

2.
Binary mixture of Variovorax sp. BS1 and Achromobacter denitrificans degraded >99 % of 300 mg l?1 of ortho-dimethyl phthalate (DMP) within 24 h of incubation at 30 °C. Rate of degradation of DMP followed the order: A. denitrificans > binary mixture > Variovorax sp. BS1. Transient intermediate metabolites were not detected using HPLC analyses at any time points using Variovorax sp. BS1 and binary mixture. However, using pure culture of A. denitrificans, monomethyl phthalate was accumulated during the course of DMP biodegradation which disappeared with time of incubation. Binary mixture of Variovorax sp. BS1 and A. denitrificans exhibited better efficiency in terms of biodegradation of DMP as compared to either individual bacterial strain. In addition, fluorescence in situ hybridization technique was used to estimate the population dynamics of Variovorax sp. BS1 in binary mixture. A. denitrificans in mixed culture were estimated by subtracting total number of cells of Variovorax sp. BS1 from the total counts of microbial cells using an epifluorescence microscope after staining with 4′,6-diamidino-2-phenylindole. Results obtained at mid-exponential growth phase suggested the abundance of both bacterial strains as primary degraders.  相似文献   

3.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

4.
Frequent blooms of the dinoflagellate Alexandrium catenella in southern Chile encouraged undertaking the present study which uses the oyster Ostrea chilensis as a model for evaluating the feeding, growth, lipid storage and mortality responses to diets containing paralytic shellfish poisoning (PSP) produced by A. catenella. Medium-term (30 days) physiological responses of two groups of juvenile oysters were measured every 10 days. Five replicates were exposed to diets containing A. catenella and other five replicates were fed with a diet containing the non-toxic algae Isochrysis galbana. Diets were continuously supplied at a concentration of 2 mg L?1, in which the feeding and metabolic activity was measured, and the scope for growth calculated. Lipids storage, actual growth and mortality were also measured every 10 days. The results showed that the toxic diet has dramatic negative effects on feeding and metabolism of the juvenile individuals of O. chilensis, with high reduction of the lipid storage and growth. Mortality was also increased in individuals fed with the contaminated diet. This study supports the conclusion that the toxic dinoflagellate A. catenella restricts the energy acquisition in the juvenile O. chilensis, an important fishery and aquaculture resource in southern Chile.  相似文献   

5.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

6.
Axenic culture of microalgae Chlorella vulgaris ATCC® 13482 and Scenedesmus obliquus FACHB 417 was used for phycoremediation of primary municipal wastewater. The main aim of this study was to measure the effects of normal air and CO2-augmented air on the removal efficacy of nutrients (ammonia N and phosphate P) from municipal wastewater by the two microalgae. Batch experiments were carried out in cylindrical glass bottles of 1 L working volume at 25 °C and cool fluorescent light of 6500 lux maintaining 14/10 h of light/dark cycle with normal air supplied at 0.2 L min?1 per liter of the liquid for both algal strains for the experimental period. In the next set of experiments, the treatment process was enhanced by using 1, 2 and 5% CO2/air (vol./vol.) supply into microalgal cultures. The enrichment of inlet air with CO2 was found to be beneficial. The maximum removal of 76.3 and 76% COD, 94.2 and 92.6% ammonia, and 94.8 and 93.1% phosphate after a period of 10 days was reported for C. vulgaris and S. obliquus, respectively, with 5% CO2/air supply. Comparing the two microalgae, maximum removal rates of ammonia and phosphate by C. vulgaris were 4.12 and 1.75 mg L?1 day?1, respectively, at 5% CO2/air supply. From kinetic study data, it was found that the specific rates of phosphate utilization (q phsophate) by C. vulgaris and S. obliquus at 5% CO2/air supply were 1.98 and 2.11 day?1, respectively. Scale-up estimation of a reactor removing phosphate (the criteria pollutant) from 50 MLD wastewater influent was also done.  相似文献   

7.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

8.
The revised representatives of ammonite genera Malbosiceras and Pomeliceras from the Berriasian of the Crimean Mountains are classed with seven species, four of the first genus [M. malbosi (Pictet), M. chaperi (Pictet), M. broussei (Mazenot), M. pictetiforme Tavera] and three of the second one [P. aff. boisseti Nikolov, P. breveti (Pomel), P. (?) funduklense Lysenko et Arkadiev sp. nov.]. The identified species are described. The genus Mazenoticeras is considered as synonym of Malbosiceras. The above species prove that all the Berriasian zones (jacobi, occitanica and boissieri) are characteristic of corresponding deposits in the Crimean Mountains.  相似文献   

9.
Pile foundations are often subject to lateral loading due to various forces on a variety of structures like high rise buildings, transmission towers, power stations, offshore structures and highway and railway structures. The present investigation is to study the effect of slopes on p-y curves (where p is the static soil reaction and y is the pile deflection) due to static lateral loading in soft clay (Consistency index Ic = 0.42). A series of laboratory model tests were carried out on the instrumented model pile on sloping ground (slopes of 1V:1H, 1V:1.5H, 1V:2H, 1V:3H and 1V:5H) and with varying embedment length to diameter ratio (L/D) of 20, 25 and 30. From the experimental results, the bending moment curves along the pile shaft are double differentiated to obtain the soil resistance (p) and double integrated to obtain the deflection (y) using curve fitting method. New p-y curves for piles located on crest of soft clay with different sloping ground surface under static lateral loading are developed. Moreover, the effect of sloping angles on proposed p-y curves was studied.  相似文献   

10.
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia. Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the above-mentioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators.  相似文献   

11.
The feeding behavior of three species of mussels, the native Ischadium recurvum and the invasives Mytella charruana and Perna viridis, was studied in an invaded ecosystem in Florida (USA). In situ feeding experiments using the biodeposition method were performed along a salinity gradient in four different locations along the St. Johns River. Water characteristics, such as salinity, temperature, dissolved oxygen, and seston loads, were recorded to identify relationships between these variables and the feeding behavior of the mussels. Feeding behavior of the species varied by study site. Clearance, filtration, organic ingestion, and absorption rates of I. recurvum were negatively affected by salinity. For the invasive mussel, M. charruana, rejection was positively related to salinity while total ingestion, organic ingestion, and absorption rates were positively related to the percentage of organic matter in the seston. For P. viridis, total and organic ingestion rates were negatively affected by salinity but positively affected by total particulate matter. Condition indices for P. viridis and M. charruana were 13.16?±?0.64 and 6.63?±?0.43, respectively, compared to 4.82?±?0.41 for the native species I. recurvum, indicating that these mussels are well adapted to the environmental conditions in the area. This study indicates that the three species have different preferred habitats because of their specific responses to water characteristics. Thus, the invasive mussels will not totally occupy the niche of the native mussel in Florida despite overlapping zones. These data may help identify potential invaded areas and understand the extent of the invasion.  相似文献   

12.
Seagrass populations have been declining globally, with changes attributed to anthropogenic stresses and, more recently, negative effects of global climate change. We examined the distribution of Zostera marina (eelgrass) dominated beds in the York River, Chesapeake Bay, VA over an 8-year time period. Using a temperature-dependent light model, declines in upriver areas were associated with higher light attenuation, resulting in lower light availability relative to compensating light requirements of Z. marina compared with downriver areas. An inverse relationship was observed between SAV growth and temperature with a change between net bed cover increases and decreases for the period of 2004–2011 observed at approximately 23 °C. Z. marina-dominated beds in the lower river have been recovering from a die-off event in 2005 and experienced another near complete decline in 2010, losing an average of 97 % of coverage of Z. marina from June to October. These 2010 declines were attributed to an early summer heat event in which daily mean water temperatures increased from 25 to 30 °C over a 2-week time period, considerably higher than previous years when complete die-offs were not observed. Z. marina recovery from this event was minimal, while Ruppia maritima (widgeongrass) expanded its abundance. Water temperatures are projected to continue to increase in the Chesapeake Bay and elsewhere. These results suggest that short-term exposures to rapidly increasing temperatures by 4–5 °C above normal during summer months can result in widespread diebacks that may lead to Z. marina extirpation from historically vegetated areas, with the potential replacement by other species.  相似文献   

13.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

14.
New bio-adsorbent carbon materials were synthesized from the leaves and veins of Mucuna pruriens and Manihot esculenta plants, which are locally available in abundance. The synthesized carbons were activated using 0.01N HNO3. Surface area of the activated carbons from M. pruriens and M. esculenta plants was found to be quite high, i.e., 918 and 865 m2/g, respectively. Scanning electron microscopy analysis of the carbons reflects complex disorganized surface structures of different open pore sizes, shapes and dimensions. These properties of the newly synthesized activated carbons led to the development of a sand-supported carbon column, for its possible use in the removal of coliform bacteria and Escherichia coli (E. Coli) from raw water samples. The removal percentage of E. coli was found to be 100% with both the types of carbon adsorbents, as confirmed from the McCardy most probable number table. Similarly, the removal percentage of coliform bacteria was found to be 99 and 98.7% by M. pruriens and M. esculenta carbon columns, respectively. These activated carbons synthesized from locally available plants possess the characteristics of good low-cost adsorbents which can be easily used for the removal of bacteria from water by adsorption method.  相似文献   

15.
Contamination of soil with heavy metals is one of the important concerns of public health and food production. Nickel is a heavy metal whose toxic properties have been confirmed. In some plants, nickel has also been known as a useful metal for their growth. In this research, the response of two chamomile species to different levels of nickel was investigated in two stages of germination and callogenesis in vitro conditions in factorial experiment based on completely randomized design. In the first experiment, the effect of different concentrations of nickel sulfate (0, 60, 120, and 180 µM) was examined on germination of German (Matricaria chamomilla) and Aurea (M. aurea) chamomile seeds in the MS culture medium. The results indicated that at high levels of nickel sulfate, the speed and percentage of germination increased in both types of chamomile. In M. chamomilla, with the increase in the concentration of nickel sulfate, the length of the seedling decreased, but the seed weight vigor, length of the radicle, and dry weight of the seedling increased. M. aurea showed elevation in most indices. The results of the second experiment indicated that the M. chamomilla leaf explants had callogenesis and its callogenesis indices showed a significant decrease at high levels of nickel, when compared with the control In M. aurea, the calluses did not grow sufficiently, suggesting the sensitivity of M. aurea’s callogenesis to the presence of different levels of nickel. In conclusion, chamomile appears to be tolerant to nickel stress.  相似文献   

16.
Vegetable tannins are complex polyphenols, which occur widely in nature. Traditionally, natural tannins have been used for tanning leather. In Brazil, the main tannin-based products are obtained from Acacia mearnsii, which is a leguminous tree native to Southeastern of Australia, and the first seeds were brought to Brazil in 1928. The main cultivation of acacia was established in Rio Grande do Sul state due to the possibility of raw material for charcoal, adhesives to fuel and for tanning leather. The leather tanning processes based on plant tannins are thought to be less harmful than chromium-based tanning, and it has been used as a sustainable alternative. However, there is scarce information about the environmental impact of the leather tanning processes, with most studies reporting inhibitory effects against microorganisms at high doses and stimulatory and positive health effects at low concentrations. The aim of this study was to evaluate the toxicity of tannin preparations extracted from A. mearnsii in Saccharomyces cerevisiae. Vegetable tannin toxicity in yeast was tested using two tannin treatments in different concentrations. In general, the results showed toxicity of vegetable in yeast, BY4741 and gsh1Δ strains.  相似文献   

17.
We describe an elephant skull recovered from a cliff section of Dhasan river of Marginal Ganga Plain. The dental morphology and cranial features of the skull have been compared with the known species of Elephas from the Indian subcontinent. Although it shows very near resemblance to Elephas namadicus, but being an isolated specimen its specific identity cannot be proclaimed with certainty. As such, the specimen is provisionally referred as E. cf. namadicus. The Optically Stimulated Luminescence ages place this find at ~56 ka BP. This is the first chronologically well constrained report of E. cf. namadicus from the Ganga Plain.  相似文献   

18.
Crude oil and its derivatives because of different events and accidents may cause pollution to the environment. A biological treatment is a novel technique that uses microorganisms to remove or neutralize pollutants from a contaminated site. Oil-contaminated soils were sampled, after isolating of soil bacteria, using quantitative and qualitative screening, biosurfactant-producing bacteria were identified and environmental factors on the growth of bacteria and biosurfactant were investigated. In this study, the Bacillus subtilis was identified as the best biosurfactant-producing strain which has the ability to grow in environments with high salinity and temperature and pH > 5. The produced biosurfactant from B. subtilis is stable to changes in temperature and salt concentration and pH (in the range of 5–12).The B. subtilis also showed that they are able to biodegrade aliphatic alkanes. The B. subtilis has necessary potential for bioremediation of oil pollution in the environment.  相似文献   

19.
Coastal ecosystems are exposed to changes in physical-chemical properties, such as those occurring in upwelling and freshwater-influenced areas. In these areas, inorganic carbon can influence seawater properties that may affect organisms and populations inhabiting benthic habitats such as the intertidal mussel Perumytilus purpuratus. Feeding and metabolic responses were measured in adult mussels from two geographic regions (central and southern Chile) and two local habitats (river-influenced and non-river-influenced) and three pCO2 levels (380, 750, and 1200 μatm pCO2 in seawater). The feeding rates of mussels tend to increase at high pCO2 levels in seawater; however this response was variable across regions and local habitats. In contrast, there was no difference in the respiratory rate of mussels between geographic areas, but there was a significant reduction of oxygen consumption at intermediate and high levels of pCO2. The results indicate that river-influenced organisms compensate for reductions in metabolic cost at elevated pCO2 levels by having their energy demands met, in contrast with non-river-influenced organisms. The lack of regional-scale variability in the physiological performance of mussels may indicate physiological homogeneity across populations and thus potential for local adaptation. However, the local-scale influences of river- and non-river-influenced habitats may counterbalance this regional response promoting intra-population variability and phenotypic plasticity in P. purpuratus. The plasticity may be an important mechanism that allows mussels to confront the challenges of projected ocean acidification scenarios.  相似文献   

20.
Abundance of the prymnesiophyte Phaeocystis pouchetii was quantified via light microscopy at 2-week to monthly intervals in Massachusetts Bay (southern Gulf of Maine, NW Atlantic) during 1992–2012. Variability in the abundance and seasonal cycle of Phaeocystis are described and synoptic hydrographic, nutrient, and meteorological data were analyzed to identify factors that may influence Phaeocystis abundance. The maximum Phaeocystis abundance was 14?×?106 cells L?1 (10 Apr 2008). It was frequently (5 of 8 years) absent prior to year 2000, but not thereafter. Seasonally, it first appeared in February to early March, reached peak abundance in mid-April, and persisted until May or early June for a duration of 0–112 days (mean 34 days). A long-term alternation between Phaeocystis and centric diatom abundance was apparent, suggesting winter-spring selection of either Phaeocystis or centric diatoms. Phytoplankton community analysis suggested that blooms affected the rest of the phytoplankton community. Phaeocystis blooms were manifest as a substantial increase in particulate nutrients above normal levels. Phaeocystis blooms were preceded in February by a slightly elevated concentration of NO3 (9.3 vs. 6.5 μM when absent) and PO4 (0.99 vs. 0.79 μM when absent). Blooms were also preceded by elevated ratios of NO3/PO4, NO3/Si, and PO4/Si, and warmer, saltier waters reflecting reduced river discharge. The correlation with salinity and river discharge suggests that Phaeocystis bloom variability is partially determined by annually varying circulation processes that determine the degree of low nutrient, low salinity coastal water intrusion into Massachusetts Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号