首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2012. During this period, 497 earthquakes and 88 quarry blasts were detected and located in the region under consideration. With a total of only 13 events with ML ≥ 2.5, the seismic activity in the year 2012 was far below the average over the previous 37 years. Most noteworthy were the earthquake sequence of Filisur (GR) in January with two events of ML 3.3 and 3.5, the ML 4.2 and ML 3.5 earthquakes at a depth of 32 km below Zug in February and the ML 3.6 event near Vallorcine in October. The epicentral intensity of the ML 4.2 event close to Zug was IV, with a maximum intensity of V reached in a few areas, probably due to site amplification effects.  相似文献   

2.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2009. During this period, 450 earthquakes and 68 quarry blasts were detected and located in the region under consideration. The three strongest events occurred about 15 km NW of Basel in southern Germany (ML 4.2), near Wildhaus in the Toggenburg (ML 4.0) and near Bivio in Graubünden (ML 3.5). Although felt by the population, they were not reported to have caused any damage. With a total of 24 events with ML ≥ 2.5, the seismic activity in the year 2009 was close to the average over the previous 34 years.  相似文献   

3.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

4.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

5.
Linking earthquakes of moderate size to known tectonic sources is a challenge for seismic hazard studies in northwestern Europe because of overall low strain rates. Here we present a combined study of macroseismic information, tectonic observations, and seismic waveform modelling to document the largest instrumentally known event in the French northern Alps, the April 29, 1905, Chamonix earthquake. The moment magnitude of this event is estimated at Mw 5.3 ± 0.3 from records in Göttingen (Germany) and Uppsala (Sweden). The event of April 29 was followed by several afterschocks and in particular a second broadly felt earthquake on August 13, 1905. Macroseismic investigations allow us to favour a location of the epicentres 5–10 km N–NE of Chamonix. Tectonic analysis shows that potentially one amongst several faults might have been activated in 1905. Among them the right lateral strike-slip fault responsible for the recent 2005 Mw = 4.4 Vallorcine earthquake and a quasi-normal fault northeast of the Aiguilles Rouges massif are the most likely candidates. Discussion of tectonic, macroseismic, and instrumental data favour the normal fault hypothesis for the 1905 Chamonix earthquake sequence.  相似文献   

6.
The East Anatolian Fault Zone is a continental transform fault accommodating westward motion of the Anatolian fault. This study aims to investigate the source properties of two moderately large and damaging earthquakes which occurred along the transform fault in the last two decades using the teleseismic broadband P and SH body waveforms. The first earthquake, the 27 June 1998 Adana earthquake, occurred beneath the Adana basin, located close to the eastern extreme of Turkey’s Mediterranean coast. The faulting associated with the 1998 Adana earthquake is unilateral to the NE and confined to depths below 15 km with a length of 30 km along the strike (53°) and a dipping of 81° SE. The fixed-rake models fit the data less well than the variable-rake model. The main slip area centered at depth of about 27 km and to the NE of the hypocenter, covering a circular area of 10 km in diameter with a peak slip of about 60 cm. The slip model yields a seismic moment of 3.5?×?1018 N-m (Mw???6.4). The second earthquake, the 1 May 2003 Bingöl earthquake, occurred along a dextral conjugate fault of the East Anatolian Fault Zone. The preferred slip model with a seismic moment of 4.1?×?1018 N-m (Mw???6.4) suggests that the rupture was unilateral toward SE and was controlled by a failure of large asperity roughly circular in shape and centered at a depth of 5 km with peak displacement of about 55 cm. Our results suggest that the 1998 Adana earthquake did not occur on the mapped Göksun Yakap?nar Fault Zone but rather on a SE dipping unmapped fault that may be a split fault of it and buried under the thick (about 6 km) deposits of the Adana basin. For the 2003 Bingöl earthquake, the final slip model requires a rupture plane having 15° different strike than the most possible mapped fault.  相似文献   

7.
A shallow-focus (3.8?km deep) and low-magnitude (M L 3.8) earthquake occurred near Sheikhupura on August 08, 2010. Shaking was felt in parts of Potwar and northern Punjab but no associated damage has been reported. Tectonically, this earthquake occurred to the south of the Salt Range in the Punjab Seismic Zone (PSZ), a shallow-focus, moderate-level seismic zone characterized by steeply dipping strike-slip and extensional faults. The focal mechanism solution, using the seismological data of the United States Geological Survey and local observatory, shows an EW-trending fault plane dipping 710?N similar to the normal faults reported in the area previously. On the basis of the imposition of the stress field on the northward-moving Indian plate and the nature of the FMS of the previous and this earthquake, the Sheikhupura earthquake is considered as one of the intraplate earthquakes occurring frequently in the PSZ. The location of the event on the Bouguer gravity maps coincides with the zone of high gravity anomaly reflecting igneous intrusion(s) or, more likely, structural disturbances (i.e., extensional faulting in the basement).  相似文献   

8.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2011. During this period, 522 earthquakes and 92 quarry blasts were detected and located in the region under consideration. With a total of only 10 events with M L????2.5, the seismic activity in the year 2011 was far below the average over the previous 36?years. Most noteworthy were the earthquake sequence of Sierre (VS) in January, with two events of M L 3.3 and 3.2, the M L 3.3 earthquake at a depth of 31?km below Bregenz, and the M L 3.1 event near Delémont. The two strongest events near Sierre produced shaking of intensity IV.  相似文献   

9.
The 19 October 2012 earthquake (M L = 5.1) occurred in the northern continental margin of Egypt within the Nile Cone at latitude 32.35° N and longitude 31.27° E. The quake was felt over a wide area in north Egypt and East Mediterranean countries, but no casualties have been reported. This area had experienced the large earthquake (Ms = 6.7) of 12 September 1955. The fault plane solution of the 19 October 2012 earthquake is here presented based on the digital seismograms recorded by the Egyptian National Seismological Network (ENSN) and other regional seismic stations. The analysis is carried out using the well-known techniques of first motion polarities of P-wave and the amplitude ratios of P-, SH-, and SV-waves with lower hemisphere projection. The fault plane solution based on the first P-wave onset demonstrates a left lateral strike-slip faulting mechanism, while the solution based on both P-wave polarities and amplitude ratios of P-, SH-, and SV-waves reveals a reverse fault with strike-slip component trending NW–SE to NE–SW, in conformity with the N–S compression along the Hellenic Arc convergence zone. Following the Brune’s model, the source dynamic parameters for the 19 October 2012 earthquake are estimated as corner frequency = 1.47 Hz, fault radius = 0.7 km, stress drop = 22.1 MPa, seismic moment = 2.80E + 16 Nm, and moment magnitude M w = 4.9. These parameters may provide important quantitative information for the seismic hazard assessment studies.  相似文献   

10.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2006. During this period, 572 earthquakes and 91 quarry blasts were detected and located in the region under consideration. Of these earthquakes, two occurred in conjunction with the construction of the new Gotthard railway tunnel and 165 were induced artificially by the stimulation of a proposed geothermal reservoir beneath the city of Basel. With 20 events with M L ≥ 2.5, five of which were artificially induced, the seismic activity in the year 2006 was far below the average over the previous 31 years. Nevertheless, six events were felt by the public, most prominently the strongest of the induced Basel events (M L 3.4), which caused some non-structural building damage. Noteworthy are also the two earthquakes near Cortaillod (M L 3.2), on the shore of Lake Neuchatel, and in Val Mora (M L 3.5), between the Engadin and Val Müstair, as well as the 42 aftershocks of the M L 4.9 Vallorcine earthquake, between Martigny and Chamonix, of September 2005. Editorial handling: Stefan Bucher  相似文献   

11.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

12.
Earthquakes in Switzerland and surrounding regions during 2004   总被引:1,自引:0,他引:1  
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2004. During this period, 677 earthquakes and 96 quarry blasts were detected and located in the region under consideration. With 22 events with ML≥2.5, the seismic activity in the year 2004 was close to the average over the last 30 years. As in previous years, most of the activity was concentrated in the Valais and in Graubünden. In addition, several moderate earthquakes occurred in the lower crust below the northern Alpine foreland. Unusual was that five earthquakes were sufficiently strong to cause ground shaking of intensity IV over large portions of the territory. Two were located in Switzerland (Liestal, ML 3.8, and Brugg, ML 4.0). The epicenters of the other three strong events were located outside Switzerland (Besan?on in the French Jura, ML 4.8, Waldkirch in southern Germany, ML 5.1, and Lago di Garda in northern Italy, ML 5.3).  相似文献   

13.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

14.
Results from a recent earthquake in the Eastern Pyrenees are presented and the seismotectonics of the region is analyzed from the presently available data. On 26 September 1984 an earthquake (ML = 4.4) took place in the area of the historical destructive earthquake of 1428. Several portable stations installed in the epicentral area to record aftershocks permitted of defining a precise location at 42°19.2′N, 2°10.2′E and 5 km depth. A maximum felt intensity of V (MSK) is obtained from macroseismic data. The epicentral location lies within a block bounded by E-W-trending structures and the focal solution shows right-lateral shearing with a NW-SE pressure axis.The seismicity in the Eastern Pyrenees shows a complex pattern which can be associated with both E-W fractures and NE-SW fault systems. Focal solutions of another two recent earthquakes of ML ~ 4, with differences in horizontal pressure axis, are also discussed.  相似文献   

15.
据中国地震台网测定,2021年5月21日21时48分在云南省大理州漾濞县发生MS6.4地震,及时查明此次地震的发震构造及震源破裂特征,可为认识该区孕震条件和判别未来强震危险性提供关键依据。采用双差定位方法对漾濞地震序列进行重新定位,得到3863次地震事件的精确震源位置。结果显示:漾濞地震序列整体呈北西—南东向分布,长约25 km;整体走向135°;MS6.4主震震中位置为25.688°N,99.877°E;震源深度约9.6 km。综合地震序列深度剖面和震源机制解结果可知,发震断层应为北西走向、整体向西南方向陡倾的右旋走滑断层,倾角具有自北西向南东逐渐变缓的趋势。进一步分析地震序列的时空演化过程发现,该地震具有典型的"前震-主震-余震型"地震序列活动特点,其破裂过程主要包括3个阶段。破裂成核阶段:首先在发震断层10~12 km深度处相对脆弱部位产生小尺度破裂,之后失稳加速破裂,发生MS5.6地震;主震破裂阶段:在构造应力场持续加载和周围小尺度破裂的共同影响下,促使浅部较高强度断层闭锁区破裂,形成MS6.4主震;尾端拉张破裂阶段:主震破裂向东南扩展过程中,在东南端形成与之呈马尾状斜交的、具有正断性质的次级破裂,并产生MS5.2余震。而且此次地震还在源区北东侧触发了北北东向的左旋走滑破裂。综合分析认为,漾濞地震是兰坪-思茅地块内部北西向草坪断裂在近南北向区域应力挤压作用下发生右旋走滑运动的结果,具有明显的新生断裂特征。近年来兰坪-思茅地块内部一系列中强地震的发生表明,青藏高原物质向东南持续挤出的过程中,遇到该地块的阻挡,正在导致地块内部早期断层贯通形成新的活动断裂。因此,川滇地块西南边界带上或相邻地块内部老断层的复活和新生断裂的产生是区域中强地震危险性分析评价中值得关注的重要课题,同时建议需重视未来该区中强地震进一步向东南和向北的迁移或扩展的可能性。   相似文献   

16.
17.
18.
Focal mechanisms for three recent earthquakes in Finland are determined using P-wave polarities together with SV/P and SH/P phase amplitude ratios. The events occurred on May 11, 2000 in Toivakka, Central Finland (ML=2.4), on September 15, 2000 in Kuusamo, northeastern Finland (ML=3.5), and on May 2, 2001 in Kolari, western Finnish Lapland (ML=2.9).In order to obtain reliable estimates of the source parameters, one-dimensional crust and upper mantle velocity models are derived for the epicenter areas from deep-seismic sounding results. The starting models are modified by one-dimensional ray tracing using the earthquake observations. The events are relocated by employing P- and S-phase arrival times from the nearest seismic stations and the final velocity models. Synthetic waveforms, calculated with the reflectivity method, are used to further constrain and verify the source and structural parameters.The Toivakka earthquake indicates thrust- or reverse-faulting mechanism at a depth of 5 km. After comparison with aeromagnetic and topographic data we suggest the eastward dipping nodal plane (358°/42°) was the fault plane. The best-fitting fault plane solution of the Kolari earthquake suggests pure thrust-faulting at a depth of 5 km. The nodal plane striking 035°/30° correlates well with surface observations of the postglacial, possibly listric fault systems in the source area. The Kuusamo earthquake (focal depth 14 km) has a normal-faulting mechanism with the nodal planes trending 133°/47° or 284°/47°. Preference is given to the SW-dipping nodal plane, as it seems to coincide with topographic and magnetic lineament directions that have been active after the last ice age.The three earthquakes have occurred in old Precambrian faults and shear zones, which have been reactivated. The reactivated faults are favourably oriented in the local stress field.  相似文献   

19.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

20.
Lee  Soo-Hyoung  Lee  Jae Min  Moon  Sang-Ho  Ha  Kyoochul  Kim  Yongcheol  Jeong  Dan Bi  Kim  Yongje 《Hydrogeology Journal》2021,29(4):1679-1689

Hydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号