首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to develop ‘spurious’ damping forces and lead to inaccurate response results. We prove that a viscous damping matrix constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned to modal damping ratios—completely eliminates the ‘spurious’ damping forces. This is the damping model recommended for nonlinear RHA. Replacing the stiffness‐proportional part of Rayleigh damping by the tangent stiffness matrix is shown to improve response results. However, this model is not recommended because it lacks a physical basis and has conceptual implications that are troubling: hysteresis in damping force–velocity relationship and negative damping at large displacements. Furthermore, the model conflicts with the constant‐damping model that has been the basis for fundamental concepts and accumulated experience about the inelastic response of structures. With a distributed plasticity model, the structural response is not sensitive to the damping model; even the Rayleigh damping model leads to acceptable results. This perspective on damping provides yet another reason to employ the superior distributed plasticity models in nonlinear RHA. OpenSees software has been extended to include a damping matrix defined as the superposition of modal damping matrices. Although this model leads to a full populated damping matrix, the additional computational demands are demonstrated to be minimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, the multi‐intensity seismic response of code‐designed conventional and base‐isolated steel frame buildings is evaluated using nonlinear response history analysis. The results of hazard and structural response analysis for three‐story braced‐frame buildings are presented in this paper. Three‐dimensional models for both buildings are created and seismic response is assessed for three scenario earthquakes. The response history analysis results indicate that the design objectives are met and the performance of the isolated building is superior to the conventional building in the design event. For the Maximum Considered Earthquake, isolation leads to reductions in story drifts and floor accelerations relative to the conventional building. However, the extremely high displacement demands of the isolation system could not be accommodated under normal circumstances, and creative approaches should be developed to control displacements in the MCE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This discussion deals with recommendations in the paper on appropriate damping formulations for use in nonlinear response history analysis of buildings. Concern over potentially excessive damping forces and moments should extend beyond the damping moments produced by the stiffness proportional part of Rayleigh damping that corresponds to rotational springs used to explicitly model plastic hinges. The key to an appropriate damping formulation for nonlinear analysis is a realistic mechanism that allows all damping forces and moments to be meaningfully assessed. Then features can be added to keep these forces and moments within reasonable bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In the inelastic time history analyses of structures in seismic motion, part of the seismic energy that is imparted to the structure is absorbed by the inelastic structural model, and Rayleigh damping is commonly used in practice as an additional energy dissipation source. It has been acknowledged that Rayleigh damping models lack physical consistency and that, in turn, it must be carefully used to avoid encountering unintended consequences as the appearance of artificial damping. There are concerns raised by the mass proportional part of Rayleigh damping, but they are not considered in this paper. As far as the stiffness proportional part of Rayleigh damping is concerned, either the initial structural stiffness or the updated tangent stiffness can be used. The objective of this paper is to provide a comprehensive comparison of these two types of Rayleigh damping models so that a practitioner (i) can objectively choose the type of Rayleigh damping model that best fits her/his needs and (ii) is provided with useful analytical tools to design Rayleigh damping model with good control on the damping ratios throughout inelastic analysis. To that end, a review of the literature dedicated to Rayleigh damping within these last two decades is first presented; then, practical tools to control the modal damping ratios throughout the time history analysis are developed; a simple example is finally used to illustrate the differences resulting from the use of either initial or tangent stiffness‐based Rayleigh damping model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
结构附加粘滞阻尼器的抗震设计   总被引:2,自引:0,他引:2  
本文结合抗震设计规范反应谱,给出了一个附加非线性流体粘滞阻尼器结构的抗震设计方法。研究了非线性阻尼器的力学特性,引入了非线性流体阻尼器的等效线性阻尼比,给出了计算最大加速度时刻附加非线性流体阻尼器结构反应的荷载组合系数,提出了按阻尼力的水平力分量与楼层剪力成正比的原则分配阻尼器阻尼系数的方法。同时给出了基于抗震规范设计反应谱附加非线性阻尼器结构的设计流程,通过一个算例说明了使用该方法设计附加非线性粘滞阻尼器结构的全过程。算例分析表明,这种设计方法适合于手算,便于设计人员掌握,在初步设计阶段可以快速、有效地设计满足给定性能水平的附加非线性流体阻尼器体系。  相似文献   

7.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Rayleigh damping is commonly used to provide a source of energy dissipation in analyses of structures responding to dynamic loads such as earthquake ground motions. In a finite element model, the Rayleigh damping matrix consists of a mass‐proportional part and a stiffness‐proportional part; the latter typically uses the initial linear stiffness matrix of the structure. Under certain conditions, for example, a non‐linear analysis with softening non‐linearity, the damping forces generated by such a matrix can become unrealistically large compared to the restoring forces, resulting in an analysis being unconservative. Potential problems are demonstrated in this paper through a series of examples. A remedy to these problems is proposed in which bounds are imposed on the damping forces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the development of a deformable connection that is used to connect each floor system of the flexible gravity load resisting system (GLRS) with the stiff lateral force resisting system (LFRS) of an earthquake‐resistant building. It is shown that the deformable connection acts as a seismic response modification device, which limits the lateral forces transferred from each floor to the LFRS and allows relative motion between the GLRS and LFRS. In addition, the floor accelerations and the LFRS story shears related to the higher‐mode responses are reduced. The dispersion of peak responses is also significantly reduced. Numerical simulations of the earthquake response of a 12‐story reinforced concrete shear wall example building with deformable connections are used to define an approximate feasible design space for the deformable connection. The responses of the example building model with deformable connections and the example building model with rigid‐elastic connections are compared. Two configurations of the deformable connection are studied. In one configuration, a buckling restrained brace is used as the limited‐strength load‐carrying hysteretic component of the deformable connection, and in the other configuration, a friction device is used. Low damping laminated rubber bearings are used in both configurations to ensure the out‐of‐plane stability of the LFRS and to provide post‐elastic stiffness to the deformable connection. Important experimental results from full‐scale tests of the deformable connections are presented and used to calibrate numerical models of the connections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates numerically the seismic response of six seismically base‐isolated (BI) 20‐story reinforced concrete buildings and compares their response to that of a fixed‐base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three‐story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension‐resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low‐friction tension‐resistant crosslinear bearings, lead‐rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7‐10 requirements, except that one component of horizontal excitation, is used in the 2D nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). At both the design earthquake and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse‐like near‐fault ground motions is also studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The use of collision shear walls (bumper‐type), acting transversely to the side subject to pounding, as a measure to minimize damage of reinforced concrete buildings in contact, is investigated using 5‐story building models. The buildings were designed according to the Greek anti‐seismic and reinforced concrete design codes. Owing to story height differences potential pounding in case of an earthquake will occur between floor slabs, a case specifically chosen because this is when pounding can turn out to be catastrophic. The investigation is carried out using nonlinear dynamic analyses for a real earthquake motion and also a simplified solution for a triangular dynamic force of short duration, comparable to the forces caused by pounding. For such analyses, nonlinear, prismatic beam–column elements are used and the effects of pounding are expressed in terms of changes in rotational ductility factors of the building elements. The local effects of pounding on the collision shear walls are investigated using a detailed nonlinear finite element model of the shear walls and results are expressed in terms of induced stresses. It is found that pounding will cause instantaneous acceleration pulses in the colliding buildings and will somewhat increase ductility demands in the members of the top floor, but all within tolerable limits. At the same time the collision walls will suffer repairable local damage at the points of contact, but will effectively protect both buildings from collapse, which could occur if columns were in the place of the walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

13.
Viscous and other damping devices are often used as elements of seismic isolation systems. Despite the widespread application of nonlinear viscous systems particularly in Japan (with fewer applications in the USA and Taiwan), the application of viscous damping devices in isolation systems in the USA progressed intentionally toward the use of supplementary linear viscous devices due to the advantages offered by these devices. This paper presents experimental results on the behavior of seismically isolated structures with low damping elastomeric (LDE) and single friction pendulum (SFP) bearings with and without linear and nonlinear viscous dampers. The isolation systems are tested within a six‐story structure configured as moment frame and then again as braced frame. Emphasis is placed both on the acquisition of data related to the structural system (drifts, story shear forces, and isolator displacements) and on non‐structural systems (floor accelerations, floor spectral accelerations, and floor velocities). Moreover, the accuracy of analytical prediction of response is investigated based on the results of a total of 227 experiments, using 14 historic ground motions of far‐fault and near‐fault characteristics, on flexible moment frame and stiff braced frame structures isolated with LDE or SFP bearings and linear or nonlinear viscous dampers. It is concluded that when damping is needed to reduce displacement demands in the isolation system, linear viscous damping results in the least detrimental effect on the isolated structure. Moreover, the study concludes that the analytical prediction of peak floor accelerations and floor response spectra may contain errors that need to be considered when designing secondary systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Recent studies have indicated uncertainty about the performance limit states of seismically isolated buildings in very large earthquakes, especially if the isolator displacement demands exceed the seismic gap and induce pounding. Previous research has shown the benefit of providing phased supplemental damping that does not affect the isolation system response in a design event. A phased passive control device, or gap damper, was designed, fabricated, and experimentally evaluated during shake table testing of a quarter scale base‐isolated three‐story steel frame building. Identical input motions were applied to system configurations without a gap damper and with a gap damper, to directly assess the influence of the gap damper on displacement and acceleration demands. The gap damper was observed to reduce displacement demands by up to 15% relative to the isolated system without the gap damper. Superstructure floor accelerations increased substantially because of damper activation, but were limited to a peak of about 1.18 g. The gap damper reduces displacement most effectively if the ground motion contains one or more of the following characteristics: the spectral displacement increases with increasing period near the effective period of the isolation system, the motion is dominated by a single large pulse rather than multiple cycles at a consistent intensity, and the motion has a dominant component aligned with a major axis of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The mid‐story isolation design method is recently gaining popularity for the seismic protective design of buildings located in the areas of high population. In a mid‐story isolated building, the isolation system is incorporated into the mid‐story rather than the base of the building. In this paper, the dynamic characteristics and seismic responses of mid‐story isolated buildings are investigated using a simplified three‐lumped‐mass structural model for which equivalent linear properties are formulated. From the parametric study, it is found that the nominal frequencies of the superstructure and the substructure, respectively, above and below the isolation system have significant influences on the isolation frequency and equivalent damping ratio of a mid‐story isolated building. Moreover, the mass and stiffness of the substructure are of greater significance than the superstructure in affecting the dynamic characteristics of the isolated building. Besides, based on the response spectrum analysis, it is noted that the higher mode responses may contribute significantly to the story shear force of the substructure. Consequently, the equivalent lateral force procedure of design codes should carefully include the effects of higher modes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Base‐isolation is regarded as one of the most effective methods for protecting the structural and nonstructural building elements from design level horizontal earthquake ground shaking. However, base‐isolation as currently practiced does not offer unlimited protection for these buildings, especially when the ground shaking includes a strong vertical component. The vulnerability of nonstructural systems in a base‐isolated building was made evident during recent shake table testing of a full‐scale five‐story base‐isolated steel moment frame where nonstructural system damage was observed following tests including vertical excitation. Past research efforts have attempted to achieve 3D isolation of buildings and nuclear structures by concentrating both the horizontal and vertical flexibility at the base of the building that are either quite limited or not economically viable. An approach whereby the vertical flexibility is distributed up the height of the building superstructure to passively reduce vertical acceleration demands in base‐isolated buildings is presented. The vertical flexibility is achieved by placing laterally restrained elastomeric ‘column’ bearings at one or more floor levels along the height of the building. To broadly investigate the efficacy of the vertically distributed flexibility concept and the trade‐off between mitigation and cost, a multi‐objective optimization study was conducted considering 3‐story, 9‐story, and 20‐story archetype buildings that aimed to minimize the median peak vertical floor acceleration demands and to minimize the direct cost of column bearings. Based on the results of the optimization study, a practical rule for determining the number of levels and locations of column bearings is proposed and evaluated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the conventional seismic design of high‐rise reinforced concrete core‐wall buildings, the design demands such as design shear and bending moment in the core wall are typically determined by the response spectrum analysis procedure, and a plastic hinge is allowed to form at the wall base to limit the seismic demands. In this study, it is demonstrated by using a 40‐story core‐wall building that this conventional approach could lead to an unsafe design where the true demands—the maximum inelastic seismic demands induced by the maximum considered earthquake—could be several times greater than the design demands and be unproportionately dominated by higher vibration modes. To identify the cause of this problem, the true demands are decomposed into individual modal contributions by using the uncoupled modal response history analysis procedure. The results show that the true demands contributed by the first mode are reasonably close to the first‐mode design demands, while those contributed by other higher modes are much higher than the corresponding modal design demands. The flexural yielding in the plastic hinge at the wall base can effectively suppress the seismic demands of the first mode. For other higher modes, however, a similar yielding mechanism is either not fully mobilized or not mobilized at all, resulting in unexpectedly large contributions from higher modes. This finding suggests several possible approaches to improve the seismic design and to suppress the seismic demands of high‐rise core‐wall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Damage assessments after past earthquakes have frequently revealed that plan configuration irregular buildings have more severe damage due to excessive torsional responses and stress concentration than regular buildings. The plan configuration irregularities introduce major challenges in the seismic design of buildings. One such form of irregularity is the presence of re-entrant corners in the L-shaped buildings that causes stress concentration due to sudden changes in stiffness and torsional response amplification; hence causes early collapse. A constructive research into re-entrant corner and torsional irregularity problems is essentially needed greater than ever. Therefore, the focus of this study is to investigate structural seismic response demands for the class of L-shaped buildings through evaluating the plan configuration irregularity of re-entrant corners and lateral–torsion coupling effects on measured seismic response demands. The measured responses include story drift, inter-story drift, story shear force, overturning moment, torsion moment at the base and over building height, and torsional irregularity ratio. Three dimensional finite element model for nine stories symmetric buildings as reference model is developed. In addition, six L-shaped building models are formulated with gradual reduction in the plan of the reference building model. The results prove that building models with high irregularity are more vulnerable due to the stress concentration and lateral torsional coupling behavior than that with regular buildings. In addition, the related lateral shear forces in vertical resisting elements located on the periphery of the L-shaped buildings could be significantly increased in comparison with the corresponding values for a symmetric building.  相似文献   

19.
In conventional modal analysis procedures, usually only a few dominant modes are required to describe the dynamic behavior of multi-degrees-of-freedom buildings. The number of modes needed in the dynamic analysis depends on the higher-mode contribution to the structural response, which is called the higher-mode effect. The modal analysis approach, however, may not be directly applied to the dynamic analysis of viscoelastically damped buildings. This is because the dynamic properties of the viscoelastic dampers depend on their vibration frequency. Therefore, the structural stiffness and damping contributed from those dampers would be different for each mode. In this study, the higher-mode effect is referred to as the response difference induced by the frequency-dependent property of viscoelastic dampers at higher modes. Modal analysis procedures for buildings with viscoelastic dampers distributed proportionally and non-proportionally to the stiffness of the buildings are developed to consider the higher-mode effect. Numerical studies on shear-type viscoelastically damped building models are conducted to examine the accuracy of the proposed procedures and to investigate the significance of the higher-mode effect on their seismic response. Two damper models are used to estimate the peak damper forces in the proposed procedures. Study results reveal that the higher-mode effect is significant for long-period viscoelastically damped buildings. The higher-mode effect on base shear is less significant than on story acceleration response. Maximum difference of the seismic response usually occurs at the top story. Also, the higher-mode effect may not be reduced by decreasing the damping ratio provided by the viscoelastic dampers. For practical application, it is realized that the linear viscous damping model without considering the higher-mode effect may predict larger damper forces and hence, is on the conservative side. Supported by: Science Council, Chinese Taipei, grant no. 88-2625-2-002-006  相似文献   

20.
针对"房桥合一"高速铁路客站质量、刚度分布严重不均匀、不同阻尼比构件繁多等特点,对其模态特征和用于时程法阻尼模型的确定进行了研究。通过位能加权激励原理和位能公式的阐述、天津西站II区的模态分析与振型分解时程法的应用,并以此为标准进行了5种不同瑞利阻尼比例系数时程法的响应比较。结果表明:位能加权法激励为各模态的振型响应,求得阻尼为振型阻尼,结构模态质量累计数突变发生在第9阶,选择第1,9阶振型确定的瑞利阻尼比例系数较合理。振型分解时程法的振型阻尼可基于振型响应的位能加权法确定,直接时程法的瑞利阻尼宜选择第1阶与模态质量累计数发生突变的振型来确定,可供结构设计与分析参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号