首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mining and milling of metal ores coupled with industries have bequeathed many countries the legacy of wide distribution of metal contaminants in sediments. The aim of this study was to assess potential sediment contamination via useful screening methods (XRF, CHNS, TGA/MS). The sediments were collected from the water reservoir Krompachy Eastern Slovakia in April 2015. Within the frame of evaluation it was found that the concentrations of the study elements (Cu, Zn, As, Pb, Cr, Ni, Cd) exceeded some of the MPC, TV and IV values. Sample c was the most polluted by metals, which evident according to it’s the highest CHNS proportion as well as the highest clay and silt proportion. In the samples studied the best correlation was confirmed between weight losses in the temperature range (400–620 °C) and the following metal concentrations: Cu (r = 0.89), Zn (r = 0.88), As (r = 0.93), Hg (r = 0.83), Pb (r = 0.87). The greatest proportions of m/z 44, m/z 18 were detected at temperatures (400–620 °C) associated with decomposition of minerals such as siderite, barite, and exothermic loss of more refractory aromatic C took also place.  相似文献   

2.
The West Development Program, initiated in 2000 by the central government of China, has attracted huge investments in the arid and semiarid regions of northwest China. As a consequence of this development, environmental pollution and ecological degradation have been widely reported. The Silk Road economic belt proposed by China promotes further economic development in the regions, but rational planning and regular monitoring are essential to minimize any additional negative impacts of the anthropogenic activities. This article reports an investigation on the distribution, enrichment and sources of trace metals in the topsoil in and around the Ningxia Hengli Steel Wire Plant (HSWP) situated along the Silk Road economic belt. The concentrations of Cd, Pb, Cr, Cu, Zn, Ni, Mn, V and Co in the surface soils of the study area vary, respectively, in the following ranges: 0.083–18.600, 21.9–2681.0, 58.0–100.0, 14.6–169.9, 59.0–4207.3, 19.3–40.8, 411–711, 55.2–76.6 and 7.46–25.21 mg/kg. The concentrations of Cd, Pb, Cr, Cu, Zn and Co are significantly higher than their local background values. Pollution levels of these trace metals in the surface soils were assessed using contamination index (C f i ), geo-accumulation index (I geo), modified contamination degree (mC d) and pollution load index. The potential ecological risks caused by the metal pollution were assessed by means of potential ecological risk factor (E f i ) and potential ecological risk index. The Spearman correlation and cluster analysis were applied to determine the contamination sources. The HSWP zone, associated with very high potential ecological risk caused by Pb and Cd, is more seriously contaminated by trace metals than the residential zone. This study indicates that Cd, Pb, Cu, Zn and Co mainly originate from industrial pollution, whereas Cr, Mn, Ni and V result from both industrial activities and natural processes.  相似文献   

3.
This research is focused on evaluating heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn) uptake and removal by Eleocharis ovata, Cyperus manimae, Typha dominguensis, and Pteridium aquilinum in a natural wetland impacted by mining activities. We analyzed heavy metals content and distribution in native plants, soils, and water of a semipermanent natural wetland in Taxco de Alarcón, Guerrero, and we also determined the physicochemical characteristics of the water. Translocation factor (TF) and bioconcentration factor (BCF) were evaluated. Results showed that physical and chemical conditions are favorable for plants development. Correlation analysis showed a good and positive relation (0.95) between Cu and Pb in soils and plants. In the analyzed matrices: Zn (0.62–2.20 mg/L) exceeded the permissible limits in water, high concentrations of Pb and Zn (26.57–525.67 and 266.67–983.33 mg/kg, respectively) were detected in the studied soils, and Pb exceeded the normal range for E. ovata and P. aquilinum in the analyzed plants. Uptake of heavy metals in the tissues of different species was found in the following order: root > leaf. Data of TF and BCF showed that E. ovata is a tolerant plant with respect to heavy metals exposure since TF value was greater than 1. This study showed that E. ovata could be considered as a bioaccumulator of heavy metals in contaminated soils.  相似文献   

4.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

5.
Past mining activities in Swaziland have left a legacy of abandoned mine sites (iron ore, asbestos, diamond and coal mine dumps), all of which have not been reclaimed. These sites were recently (2013) considered by the country’s wastewater treatment authorities as suitable places where biosolids can be applied, firstly as a biosolids disposal alternative and, secondly, as a strategy to accelerate mine soil remediation through phytostabilization. In order to understand the effects that this might have on mine soil conditions and microbiota, two (2) plant growth trials were conducted in biosolid-treated iron mine soils and one (1) trial on undisturbed soil, under greenhouse conditions, for twelve (12) weeks. According to the results obtained, the combination of biosolids and plants led to significant improvements (p < 0.05) in parameters related to soil fertility. Significant increases (p < 0.05) in alkaline phosphatase, β-glucosidase and urease soil enzyme activities were also observed. Copper and zinc were significantly (p < 0.05) increased (Cu from 17.00–50.13 mg kg?1; Zn from 7.59–96.03 mg kg?1); however, these sludge-derived metals did not affect enzyme activities. Improvements in soil physicochemical conditions, organic matter–metal complexes, effects of plants on metals and the essentiality of Cu and Zn to soil enzymes were thought to have masked the effects of metals. Increases in soil enzyme activities were considered to be indicative of improvements in the quality, fertility health and self-purification capacity of iron mine soils due to synergistic effects of biosolids and plants.  相似文献   

6.
Multidimensional assessment of air pollution was carried out on trace metals in particulates, desert plant parts and soil collected from the six sites to validate air pollution tolerance index, translocation and bioaccumulation factors. A map indicating the sampled sites was superimposed on the Disper 5.2 software graphical interface to track the particulate dispersion route during the summer and winter seasons. This study showed site-wise orientation of particulates dispersed in the ambient air. Observations indicated the high concentrations of dispersed coarse > fine > ultra-fine particulates in trace metals analyzed from selected desert plants and in the soil especially during winter than in the summer seasons. High air pollution tolerance index was observed in the sequence of Calatropis gigantean > Portulaca oleracea > Citrullus collocynthis > Rumex vesicarius > Bienertia sinuspersici > Tribulus terrestris. Assessment of translocation and bioaccumulation factors labeled these desert plants as hyper-accumulators. The synergistic effect of the translocation and bioaccumulation factor in the various plants and the pollution levels for a given geographical location provides insight management to mitigate air pollution and landscape designers to grow tolerant species and protect sensitive plants from air pollution.  相似文献   

7.
With the increasing industrialization, heavy metals concentration in soils has greatly increased. Phytoremediation is a low-cost, non-intrusive and aesthetically harmonious technology that uses plants to remediate contaminated sites by heavy metals. The aim of the study was to determine Cd, Pb and Zn concentration in the biomass of plant species growing on a multi-metal-contaminated site of lead smelter processing, to assess the workability of using these plants for phytoremediation purposes and highlight possible damage in morphological leaf changes. Two plant species, i.e., Ipomoea asarifolia and Urochloa decumbens and the associated soil samples were collected and analyzed Cd, Pb and Zn concentrations and then calculating the bioconcentration factor and translocation factor parameters for each element. Leaves and roots samples were observed by light microscopy. Metal concentrations varied greatly and majorly depend on site sampled, plant species and tissue. Cd, Pb and Zn in tissue ranged from 0 to 102.48, 0 to 381.04 and 12.84 to 295.02 mg Kg?1. However, none of the plant showed potential for hyperaccumulation. Both plants showed bioaccumulation factor more than one, where it was 7.66 and 6.82 for Pb and Zn in U. decumbens, respectively. Translocation factor was calculated below one for both plants and all metals. Morphological studies revealed development of adaptive features that strengthen the U. decumbens to grow in contaminated soil. Our study suggests that I. asarifolia and U. decumbens have potential for phytostabilization at multi-metal-contaminated site.  相似文献   

8.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

9.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

10.
Fish diets play a critical role in our understanding of aquatic trophic dynamics and are an important component in developing ecosystem-based approaches to fisheries management. Although large nektonic fishes exert top-down predator effects on the food web and typically support viable commercial and recreational fisheries, little is known about the diet of this guild. We evaluated the diets (6327 stomachs) of four nektonic predatory fishes (Pomatomus saltatrix [78–395 mm], Cynoscion regalis [91–520 mm], Morone americana [156–361 mm], and Morone saxatilis [82–785 mm]) in Delaware Bay and in the adjacent ocean. To assess ontogenetic, geographic, and interspecific variation in diets, observations from individual fish stomachs were clustered into species-size class groups, and dietary overlap was estimated using multivariate analyses. A shift in diet composition, as well as diversity, occurred along the estuarine gradient and into the adjacent ocean. Some prey were shared by most predators, including some crustaceans (dominated by Callinectes sapidus, mysids, and Palaemonetes spp.), fundulids (dominated by Fundulus heteroclitus), engraulids (dominated by Anchoa mitchilli), and clupeids (dominated by Brevoortia tyrannus). However, inter- and intra-specific variation in diet was observed as well. In particular, M. americana consumed fewer engraulids and clupeids, and many more and diverse types of invertebrates, while P. saltatrix consumed more clupeids and less invertebrates. The lack of overlap in diet between the four predators evaluated, and between size groups for each predator, supports previous evidence that these groups feed in trophic guilds defined by species and by size within a species. The highly variable diets for these predators suggest high resolution spatial data are necessary in order to quantify their most important prey and their role in coastal ecosystems.  相似文献   

11.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

12.
The first data on ecology and trace metal (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb) bioaccumulation by macrozoobenthic organisms in area along the 130°E meridional transect from shallow water near the Lena River’s delta till the 78°N are presented. At the newly discovered methane seeps in the shallow Laptev Sea areas (72 m depth), a higher total abundance and biomass compared with background stations were recorded. In carbonate shells and soft tissues of Bivalvia Portlandia arctica and Astarte borealis, the high concentrations of Mn, Fe, Pb, Ni and Co were detected that varied in dependence from sampling site. In the dominating taxa of brittle stars (Ophiuroidea), there were found no significant differences between majority of trace metal content in organisms inhabiting the seeps area and background ones. An elevated content of some metals was detected in the Asteroidea bodies that may be attributed to its trophic behavior (deposit feeder).  相似文献   

13.
In the present study, bulk contents of Ni, Zn, Cu, Pb and Mn in urban area of Tehran city are determined. Subsequently, the chemical bonds of metals with various soil fractions are brought out. Chemical partitioning studies revealed that various percentile of Ni, Zn, Cu, Pb and Mn is found in anthropogenic portion of soils. Zinc, Ni, Cu, Pb and Mn fall within “low pollution” class in accordance with index of pollution (I POLL). The trend of anthropogenic share of studied metals in soils of Tehran is Zn (55 %) > Cu (31 %) > Ni and Pb (30 %) > Mn (12 %). The overall potential of studied plants in metal removal from soil is Salvia > Viola > Portulaca. It should be pointed out that roots have higher potential in metal removal from soil when compared with leaf and stem. Lithogenic portion of metals remains intact before and after pot analysis. Thus, phytoremediation is highly dependent on the chemical bonds of metals. Present study showed that metal contents of loosely bonded ions, sulfide bonds and organometallic bonds are reduced after 90 days of plant cultivation. The overall removal trend of studied metals is Zn (16 %) > Cu (14 %) > Ni (11 %) > Pb (7 %) > Mn (6 %). The obtained results show that the anthropogenic portion of metals is reduced after the phytoremediation practice. For instance, the initial anthropogenic portion of Zn (55 %) is changed to 39 % showing an overall reduction of about 16 %. The anthropogenic portions of Cu, Ni, Pb and Mn are also reduced by 14, 11, 7 and 6 %, respectively.  相似文献   

14.
The crystal chemistry of a ferroaxinite from Colebrook Hill, Rosebery district, Tasmania, Australia, was investigated by electron microprobe analysis in wavelength-dispersive mode, inductively coupled plasma–atomic emission spectroscopy (ICP–AES), 57Fe Mössbauer spectroscopy and single-crystal neutron diffraction at 293 K. The chemical formula obtained on the basis of the ICP–AES data is the following: \( ^{X1,X2} {\text{Ca}}_{4.03} \,^{Y} \left( {{\text{Mn}}_{0.42} {\text{Mg}}_{0.23} {\text{Fe}}^{2 + }_{1.39} } \right)_{\varSigma 2.04} \,^{Z1,Z2} \left( {{\text{Fe}}^{3 + }_{0.15} {\text{Al}}_{3.55} {\text{Ti}}_{0.12} } \right)_{\varSigma 3.82} \,^{T1,T2,T3,T4} \left( {{\text{Ti}}_{0.03} {\text{Si}}_{7.97} } \right)_{\varSigma 8} \,^{T5} {\text{B}}_{1.96} {\text{O}}_{30} \left( {\text{OH}} \right)_{2.18} \). The 57Fe Mössbauer spectrum shows unambiguously the occurrence of Fe2+ and Fe3+ in octahedral coordination only, with Fe2+/Fe3+ = 9:1. The neutron structure refinement provides a structure model in general agreement with the previous experimental findings: the tetrahedral T1, T2, T3 and T4 sites are fully occupied by Si, whereas the T5 site is fully occupied by B, with no evidence of Si at the T5, or Al or Fe3+ at the T1T5 sites. The structural and chemical data of this study suggest that the amount of B in ferroaxinite is that expected from the ideal stoichiometry: 2 a.p.f.u. (for 32 O). The atomic distribution among the X1, X2, Y, Z1 and Z2 sites obtained by neutron structure refinement is in good agreement with that based on the ICP–AES data. For the first time, an unambiguous localization of the H site is obtained, which forms a hydroxyl group with the oxygen atom at the O16 site as donor. The H-bonding scheme in axinite structure is now fully described: the O16H distance (corrected for riding motion effect) is 0.991(1) Å and an asymmetric bifurcated bonding configuration occurs, with O5 and O13 as acceptors [i.e. with O16···O5 = 3.096(1) Å, H···O5 = 2.450(1) Å and O16H···O5 = 123.9(1)°; O16···O13 = 2.777(1) Å, H···O13 = 1.914(1) Å and O16H···O13 = 146.9(1)°].  相似文献   

15.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

16.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

17.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

18.
This study investigated the relationship between wastewater environments and the nitrifiers at a full-scale plant using principal component analysis. Ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were detected by florescent in situ hybridization, polymerase chain reaction, phylogenetic analysis, real-time quantitative polymerase chain reaction. Pyrosequencing was also used in profiling the ammonia monooxygenase locus of ammonia-oxidizing bacteria community. It was found that the dominant ammonia-oxidizing bacteria sequences were related to uncultured ammonia-oxidizing bacterium, uncultured Nitrosomonadaceae bacterium, Nitrosomonas sp., and uncultured bacterium. In addition, Nitrobacter clones were related to uncultured alpha proteobacterium, uncultured bacterium, uncultured Nitrobacter sp., and uncultured Bradyrhizobium sp., whereas Nitrospira clones were similar to uncultured bacterium, Candidatus Nitrospira defluvii, uncultured Nitrospira sp., and uncultured Nitrospirae bacterium. The ammonia-oxidizing bacteria and nitrite-oxidizing bacteria ranged 2.83 × 108–1.33 × 1010 and 1.25 × 1010–1.13 × 1011 copies L?1, respectively, equivalent to nitrite-oxidizing bacteria: ammonia-oxidizing bacteria ratio of 10:1. The first three parts of the principal components analysis accounted for 76.8% of the explained variance. The first principal component (44.4%) designated that ammonia-oxidizing bacteria and Nitrospira were mainly influenced by seasonal variations, followed by chemical oxygen demand concentration and nitrogen species (i.e., ammonia, nitrite, and nitrate). The second principal component (19.1%) showed no information about the nitrifiers’ interaction with environmental factors, whereas Nitrobacter demonstrated a high correlation with ammonia on the third principal component (13.3%). These results revealed that the species of Nitrobacter were less influenced by environmental conditions than ammonia-oxidizing bacteria and Nitrospira spp.  相似文献   

19.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

20.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号