首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two intervals of faunal turnover are revealed by the study of radiolarians from the Early to Middle Miocene sequence of Andaman-Nicobar belonging to Stichocorys wolffii-Calocycletta costata-Dorcadospyris alata zones. These faunal changes are reflected in the values of species diversity, change in abundance of taxa, origination and extinction events and change in radiolarian assemblages. One such faunal change is identified in the latest Early Miocene. The time of this faunal change is marked by the extinction of species like Carpocanopsis cingulata and appearance of Calocycletta costata, Giraffospyris toxaria, Acrocubus octopylus and Liriospyris parkerae, an increasing trend in percentage of cold water species and a decreasing trend in species diversity upwards. The interval coincides with the time of initiation of cooling of sea surface water. Another, and the most prominent faunal turnover of radiolarians is recognized in the Middle Miocene Dorcadospyris alata Zone at about 14.8–12.7 Ma and is characterized by almost complete disappearance of an earlier dominant assemblage and an increase in abundance of an assemblage that was practically absent in the older sequence. The time of this turnover can be correlated with the time of Middle Miocene cooling identified in the examined sequence.  相似文献   

2.
The New Zealand succession spans the full length of the Permian, and unlike that of most areas of the world, is almost entirely marine, with faunas ranging from Sakmarian to topmost ("Tatarian") Permian. The Lower Permian is correlated by brachiopods, bivalves and gastropods with faunas of Queensland and New South Wales, and the Upper Permian by brachiopods, an ammonoid, and fusulinids with Tethyan sequences of south and east Asia.  相似文献   

3.
《Quaternary Science Reviews》2007,26(1-2):142-154
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP).The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.  相似文献   

4.
The study of nannofossils and dinoflagelate cysts from the Paleocene-Eocene transition in the Nasypnoe section, Eastern Crimea identified the bed corresponding to the global event referred as the Paleocene-Eocene Thermal Maximum (PETM). The assemblages of both groups of microphytoplankton display significant changes including the appearance of Rhomboaster spp., Discoaster anartios and D. araneus nannofossils and Apectodinium augustum and Wilsonidium pechoricum dinocysts featured for this event and major variations in the ratio of taxa resulted in domination of eutrophic and warm-water species. The paleoecological interpretation of nannofossil and dinocyst distribution suggests a drastic sea-level fall preceded the PETM and occurrence of two transgressive episodes during it.  相似文献   

5.
An evaluation of the distribution of P concentrations in streamflow, P fractions andthe microbial biomass P pool was made of bed and bank sediments along a lowlandstream in New Zealand. Agricultural intensification increased downstream. However,most P fractions decreased downstream (total P decreased from c. 400 to 250 mg kg-1) in bed sediments, while P in streamflow remained relatively constant (generally < 0.005 mg l-1) and sediment microbial P increased from 2 to 8 mg kg-1. An investigation of P release from dried and rewetted sediments showed that solution P (CaCl2-P) increased, on average > 300%, and proportional to the size of the microbial biomass P pool before drying, except in sediments with much organic carbon (OC). When supplied with a P source (1 mg l-1) and then simultaneously with a C source (glucose, 100 mg l-1), all sediment behaved similarly and biotic sorption accounted for, on average, 27 and 34% of the total sediment uptake, respectively (maximum of 58%). The quantity of P taken up was related to the initial size of the microbial biomass P pool, and the availability of P as influenced by organic P complexes and OC. The sediment microbial biomass represents a transient, but small store of P could be useful to indicate bioavailable P inputs.  相似文献   

6.
Schistose mylonitic rocks in the central part of the Alpine Fault (AF) at Tatare Stream, New Zealand are cut by pervasive extensional (C′) shear bands in a well-understood and young, natural ductile shear zone. The C′ shears cross-cut the pre-existing (Mesozoic—aged) foliation, displacing it ductilely synthetic to late Cenozoic motion on the AF. Using a transect approach, we evaluated changes in geometrical properties of the mm–cm-spaced C′ shear bands across a conspicuous finite strain gradient that intensifies towards the AF. Precise C′ attitudes, C′-foliation dihedral angles, and C′–S intersections were calculated from multiple sectional observations at both outcrop and thin-section scales. Based on these data the direction of ductile shearing in the Alpine mylonite zone during shear band activity is inferred to have trended >20° clockwise (down-dip) of the coeval Pacific-Australia plate motion, indicating some partitioning of oblique-slip motion to yield an excess of “dip-slip” relative to plate motion azimuth, or some up-dip ductile extrusion of the shear zone as a result of transpression, or both. Constant attitude of the mylonitic foliation across the finite strain gradient indicates this planar fabric element was parallel to the shear zone boundary (SZB). Across all examined parts of the shear zone, the mean dihedral angle between the C′ shears and the mylonitic foliation (S) remains a constant 30 ± 1° (1σ). The aggregated slip accommodated on the C′ shear bands contributed only a small bulk shear strain across the shear zone (γ = 0.6–0.8). Uniformity of per-shear slip on C′ shears with progression into the mylonite zone across the strain gradient leads us to infer that these shears exhibited a strain-hardening rheology, such that they locked up at a finite shear strain (inside C′ bands) of 12–15. Shear band boudins and foliation boudins both record extension parallel to the SZB, as do the occurrence of extensional shear band sets that have conjugate senses of slip. We infer that shear bands nucleated on planes of maximum instantaneous shear strain rate in a shear zone with Wk < 0.8, and perhaps even as low as <0.5. The C′ shear bands near the AF formed in a thinning/stretching shear zone, which had monoclinic symmetry, where the direction of shear-zone stretching was parallel to the shearing direction.  相似文献   

7.
Planktonic foraminiferal assemblages from the Late Cretaceous-Early Tertiary sedimentary sequence in Quseir (Hammadat section), Safaga (Wasif section) and Esh El-Mellaha (Esh El-Mellaha section) areas along the Red Sea Coast, provide a database for biostratigraphical subdivisions and marking of faunal changes. Ten planktonic foraminiferal zones were found. There are, from base to top, the Late Cretaceous Globotruncana ægyptiaca and Gansserina gansseri Zones and the Early Tertiary Parasubbotina pseudobulloides, Praemurica trinidadensis, P. uncinata, Morozovella angulata, Igorina pusilla, Globanomalina pseudomenardii, Morozovella velascoensis and M. edgari zones.Two intervals of non-deposition of sediments (hiatuses) in the study areas are recorded, indicating tectonic events. The first hiatus occurred all over the study areas near the Cretaceous/Tertiary boundary. The second hiatus is restricted to the Late Palæocene of the Safaga area.Two global planktonic foraminiferal faunal turnover events are identified, reflecting major palæoceanographic changes. The faunal turnover event I occurred near the M. angulata/I. pusilla boundary near the Palæocene/Eocene boundary. These turnovers are characterised by the appearance and disappearance of species and changes in relative abundance, diversity and richness of species. Oscillation in the mean sea level in the study areas during the Late Cretaceous-Early Tertiary may be related to a true eustatic change in addition to the evidence for local tectonic control.  相似文献   

8.
9.
Bed load sediment traps were deployed at two sections across channels in Rangaunu Harbour entrance. Traps were inspected and emptied by divers at hourly intervals through both spring and neap tidal cycles for a total of 292 trap deployments. Current velocities were measured simultaneously with the trap inspections. Transport is concentrated in sandy megaripple fields on the channel banks and sub-tidal platforms flanking the channels. There, transport is almost continuous throughout the tidal cycle, increasing with flow velocity but lagging by approximately one hour. The channel floors are lined with shell-gravel lag across which bedload transport rates are low and discontinuous. Tidal asymmetry produces a net seaward transport through the channel troughs and a net landward transport across the channel banks and flanking sub-tidal platforms. Sediment leaving the harbour recirculates in anticlockwise gyres across the ebb-tide delta to re-enter the harbou and maintain the supply of sand to the megaripple field. Transport during spring tides is typically 25–30 times that during neaps. Predictions of transport rates, from a method developed by Black & Healy utilizing the Yalin bedload equation, produced transport rates similar to the traps over sand beds. Transport over shell lag surfaces appears independent of near-bed velocity and more dependent on the passage of ribbons of sand across the lag surface.  相似文献   

10.
Devonian faunas including conodonts, radiolari-ans, tentaculitids and other important fossils have re-cently been found at several localities in the Indochina Terrane. These faunas are biostratigraphically and tectonically important.  相似文献   

11.
Barrier dunes on the northern side of the Tawharanui Peninsula, north of Auckland, New Zealand, appear to have been overtopped by extreme waves that have deposited two large sand washover lobes in a back beach wetland. Present-day storm surges and storm waves are incapable of overtopping the barrier dunes. However, historical data and numerical models indicate tsunamis are amplified by resonance within the adjacent bay and Hauraki Gulf. Further, the location of nearshore reefs in close proximity to the washover lobes suggests that the interaction between tsunamis and the reefs further amplified the waves at those locations. The presence of a distinctive pumice (Loisels Pumice) within the washover deposits suggests that the deposits are associated with a 15th Century eruption from the submarine Mt Healy caldera located northeast of New Zealand.  相似文献   

12.
A generalised crustal structure of Fiordland is proposed.Detailed mapping in part of Western Fiordland has led to the recognition of a basement granulite facies lower crustal material, probably Precambrian in age) separated by a regional thrust zone from a cover sequence (amphibolite facies gneisses, of Lower Paleozoic age). With the recognition of the basement—cover relationship and the aid of aeromagnetic anomalies Fiordland has been divided into four, generally north-northeast trending, regions. The Western Fiordland region is composed chiefly of basement rocks. The Central Fiordland and Southwestern Fiordland regions are made up predominantly of amphibolite and greenschist-facies metasediments and gneissic granodiorites of the cover sequence, which in Central Fiordland have a regional dip to the east, off the basement. The Eastern Fiordland region is characterised by a series of basic, intermediate and acid intrusive rocks. The more prominent magnetic anomalies in Eastern Fiordland, Southwestern Fiordland, and a large anomaly off the coast of Western Fiordland, are all considered to be caused by intrusive bodies. The presence of a positive gravity anomaly over Western Fiordland, coupled with a gravity low offshore, is consistent with the lower crust being uplifted and exposed in this area. Continuing shallow and intermediate-depth seismic activity beneath Fiordland, as well as the large size of the gravity anomaly, suggest that tectonic forces are currently acting to maintain Western Fiordland at its unusually high level.Fiordland thus displays a cross-section of continental crust: Precambrian(?) metaigneous granulites in the lower crust; Lower Paleozoic metasedimentary amphibolitefacies gneisses and melted equivalents in the middle crust; Mesozoic intrusives, and overlying Cretaceous and Tertiary sediments in the upper crust.  相似文献   

13.
A meander lobe neck diverts stream water into a hyporheic flow path adjacent to a low gradient stream, Little Kickapoo Creek, Illinois, USA. Hyporheic processes have been well-documented in surface water–groundwater mixing zones underlying and directly adjacent to streams. Alluvial aquifers underlying meander necks provide a further extension of the hyporheic zone. Hydraulic head and temperature data, collected from a set of wells across a meander neck, show stream water moves through the meander neck. The hydraulic gradient across the meander neck (0.006) is greater than the stream gradient (0.003) between the same points, driving the bypass. Rapid subsurface response to elevated stream stage shows a hydraulic connection between the stream and the alluvial aquifer. Temperature data and a Peclet number (Pe) of 43.1 indicate that thermal transport is dominated by advection from the upstream side to the downstream side of the meander neck. The temperature observed within the alluvial aquifer correlates with seasonal temperature variation. Together, the pressure and temperature data indicate that water moves across the meander neck. The inflow of stream water through the meander neck suggests that the meander system may host biogeochemical hyporheic zone processes.  相似文献   

14.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

15.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (lxl7middot;5 km) introducing Upper Jurassic sediments,Marlborough, New Zealand. The ultrabasic-gabbroic rocks containlenses of kaersutite pegmatite and sodic syenite pegmatite andare intruded by ring dykes of titanaugite-ilmenite gabbro andlamprophyre. The margin of the intrusion is defined by a ringdyke of alkali gabbro. The plutonic rocks are cut by a swarmof hornblendebiotite-rich lamprophyre dykes. Thermal metamorphismhas converted the sediments to a hornfels ranging in grade fromthe albite-epidote hornfels facies to the upper limit of thehornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82–74),endiopside (Ca45Mg48Fe7–Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10–Ca44Mg39Fe17),plagioclase (An73–18), and ilmenitetitaniferous magnetite,with various amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between endiopside and titanaugitewith the coupled substitution Ry+2+Si;;(Ti+4+Fe+3+Al+3 and asympathetic increase in CaAl2SiO6 (0·2–10·2percent) and CaTiAl2O6 (2·1–8·1 per cent)with fractionation. Endiopside shows a small, progressive Mgenrichment along a trend subparallel to the CaMgSi2O6–Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1·0–57middot;7 per cent TiO2) kaersutite (6·4per cent TiO2) Fe-rich hastingsite (18·0–19·1per cent FeO as total Fe). Biotite is high in TiO2 (6·6–7·8per cent). Ilmenite and titaniferous magnetite (3·5–10·6per cent TiO2) are typically homogeneous grains; their compositioncan be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in A12O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant  相似文献   

16.
TIMS and SHRIMP U–Pb analyses of zircons from Milford Orthogneiss metadiorite (P = 1–1.4 GPa; T ≥ 750°C) of the Arthur River Complex of northern Fiordland reveal a bimodal age pattern. Zircons are predominantly either Paleozoic (357.0 ± 4.2 Ma) and prismatic with oscillatory zoning, or Cretaceous (133.9 ± 1.8 Ma) and ovoid with sector or patchy zoning. The younger age component is not observed overgrowing older grains. Most grains of both ages are overgrown by younger Cretaceous (~120 Ma) metamorphic zircon with very low U and Th/U (0.01). We interpret the bimodal ages as indicating initial igneous emplacement and crystallisation of a dioritic protolith pluton at ~357 Ma, followed by Early Cretaceous granulite-facies metamorphism at ~134 Ma, during which a significant fraction (~60%) of the zircon grains dissolved, and subsequently reprecipitated, effectively in situ, in partial melt pockets. The remaining ~40% of original Paleozoic grains were apparently not in contact with the partial melt, remained intact, and show only slight degrees of Pb loss. Sector zoning of the Cretaceous grains discounts their origin by solid state recrystallisation of Paleozoic grains. The alternative explanation—that the Paleozoic component represents a 40% inherited component in an Early Cretaceous transgressive dioritic magma—is considered less likely given the relatively high solubility of zircon in magma of this composition, the absence of 134 Ma overgrowths, the single discrete age of the older component, equivalent time-integrated 177Hf/176Hf compositions of both age groups, and the absence of the Cambrian-Proterozoic detrital zircon that dominates regional Cambro-Ordovician metasedimentary populations. Similar bimodal Carboniferous-Early Cretaceous age distributions are characteristic of the wider Arthur River Complex; 8 of 12 previously dated dioritic samples have a Paleozoic component averaging 51%. Furthermore, the age and chemical suite affinity of these and several more felsic rocks can be matched with those of the relatively unmetamorphosed Carboniferous plutonic terrane along the strike of the Mesozoic margin in southern Fiordland, also supporting the in situ derivation of the Carboniferous “inherited” component.  相似文献   

17.
渭北奥陶系的放射虫燧石岩   总被引:4,自引:1,他引:4  
渭北奥陶系的放射虫燧石岩是在稳定的华北地台上形成的远洋沉积.它们产在赵老峪组深水碳酸盐地层的下部,并以层位稳定、纹层发育、富含放射虫骨骼、成岩交代组构清楚,以及在剖面上与薄层的硅质页岩呈韵律互层等为等征,表明是深水的放射虫软泥在成岩作用早期由生物蛋白石经溶解-再沉淀反应快速转变而成.这种产在地台上的远洋沉积虽不多见,却是海平面大规模上升及其伴生的重大地质事件的反映.渭北放射虫燧石岩的时代相当于中奥陶世卡拉道克期.当时正值全球性海平面上升,秦岭古海盆也在发生强烈扩张与俯冲,因此,华北地台南缘下沉,使渭北地区变成了弧后深水盆地的北部边缘.当时研究区的古地理位置也恰好处于低纬度的赤道附近.这些都为放射虫燧石岩的堆积提供了有利的条件.由于当时钙质浮游生物尚未大量兴起,所以其沉积作用不受CCD的控制,水深较之现代的类似物可能要浅得多.  相似文献   

18.
The Raskoh arc is about 250 km long, 40 km wide and trends in ENE direction. The arc is convex towards southeast and terminated by the Chaman transform fault zone towards east. This arc is designated as frontal arc of the Chagai-Raskoh arc system.The Late Cretaceous Kuchakki Volcanic Group is the most widespread and previously considered the oldest unit of the the Raskoh arc followed by sedimentary rock formations including Rakhshani Formation (Paleocene), Kharan Limestone (Early Eocene) and Nauroze Formation (Middle Eocene to Oligocene), Dalbandin Formation (Miocene to Pleistocene), and semi-unconsolidated Subrecent and Recent deposits. The Rakhshani Formation is the most widespread and well-exposed unit of the Raskoh arc. During the present field investigation the Rakhshani forma-tion in the southeastern part of the Raskoh arc, is identified as an accretionary complex, which is designated as Raskoh accretionary complex. The Raskoh accretionary comple is subdivided into three units: (a) Bunap sedimen-tary complex, (b) Charkohan radiolarian chert, and (c) Raskoh ophiolite melange. The Bunap sedimentary complex is farther divided into three tectonostratigraphic units viz., northern, middle and southern. Each unit is bounded by thrust faults, which is usually marked by sheared serpentinites, except northern unit, which has gradational and at places faulted contact with the Kuchakki Volcanic Group. The northern unit is mainly composed of allochthonous fragments and blocks of limestone, sandstone, mudstone and the volcanics in dark gray, greenish gray and bluish gray siliceous flaky shale. At places the shale is metamorphosed into phyllite. This unit is thrust over the middle unit, which exhibits relatively a coherent stratigraphy, represented by greenish gray calcareous flaky shale with intercalation of thin beds and lenticular bodies of mudstone, sandstone and limestone. The middle unit is again thrust over the southern unit, which is mainly composed of large exotic blocks of volcanic rocks, limestone, sand-stone, mudstone and conglomerate embedded in dark gray, greenish gray and bluish gray siliceous flaky shale which is generally moderately argillized. The unit is thrust over the Kharan Limestone. During the present field investigation about 350 meter thick sequence of thin-bedded maroon and green chert intercalated with the siliceous flaky shale of the same colour are discovered within this unit, which is found in the southeastern part of the Ras-koh arc. This chert sequence occurs on the margins of a large exotic block (350m X 3 km) of volcaniclastic rocks of unknown origin, which makes an overturned syncline. This chert sequence is developed on its both limbs and has lower faulted contact with the Bunap sedimentary complex.Two samples collected from this chert sequence yielded radiolarian fauna, which include Parvicingula sp., Laxto-rum sp., Parahsuum cf. simplum, Parahsuum sp., Nassellaria gen. et sp. indet., Hsuum cf. Matsuokai., Archaeo-spongoprunum sp., Nassellaria gen. et sp. indet. and Hagias gen. et sp. indet., Tricolocapsa sp., Hsuum sp., Ris-tola sp., Archaeospongoprunum sp. and Tritrabinate gen. et sp. indet. This radiolarian chert sequence represents the late Early to Middle Jurassic pelagic sediment deposited in Ceno-Tethyan ocean floor; prior to the inception of volcanism in the Raskoh arc and accreted with the arc during Late Cretaceous to Eocene along with the Bunap sedimentary complex of Late Jurassic age.  相似文献   

19.
A new section at Jebel Gorraa,in northern Tunisia,contains the Paleocene-Eocene transition interval.Sample analysis of the section delivers abundant and diverse microfauna of planktonic and benthic foraminifera.Biostratigraphically,the Acarinina sibaiyaensis index-species is identified for the first time in this region,which allows us to specify the location of the Paleocene-Eocene boundary as well as the first E1 biozone of the lower Eocene.Samples from this biozone contain calcitic tests poorly preserved with an enrichment of iron oxide signifying a period of upheaval in local marine environments linked to the global warming of the Paleocene-Eocene Thermal Maximum (PETM),the marker for the P/E boundary.  相似文献   

20.
Human impacts on the Waikato River system, New Zealand   总被引:1,自引:0,他引:1  
M. A. Chapman 《GeoJournal》1996,40(1-2):85-99
The Waikato River drains 13% of the North Island. It rises in the Central Volcanic Plateau; the headwaters, including the Tongariro R., drain into oligotrophic Lake Taupo, important for fishing and holidaying. The river flows north from Taupo for 450 km to the sea near Auckland. Human impacts on the river system have been extensive, primarily dating from European colonisation begun in the 1800s. Most of the catchment below L. Taupo has been altered by agricultural development (mainly sheep and cattle rearing); the original forests and swamps have been lost leading to increased nutrient levels, erosion, light intensities, and water temperatures. There is also extensive use of the water for electricity generation. The Tongarino Power Scheme involves impoundment of water, and the diversion of additional water from the Whanganui River and other catchments with consequent effects on their biota. There are 8 hydro-electric dams on the Waikato River below Taupo causing barriers to migratory animals, downstream effects due to impoundments, and alterations to water flow regimes. Impacts of geothermal power stations, and the water-cooled Huntly Power Station in the lower Waikato are more localised. Eutrophication is enhanced by sewage and stormwater discharges, but all wastes now receive some form of treatment. There are only 340,000 people in the catchment and the major industrial pollution comes from meat and dairy processing and forestry. Some natural pollution results from geothermal inputs. Water abstraction and discharges into the river are now closely regulated. Extensive introductions of exotic biota have been made, notably trout, coarse fish, and macrophytes. The native biota has been little-studied and the biological processes operating in the river are poorly understood. It is not possible to assess the relative importance of eutrophication and habitat change, nor to predict the impacts of future changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号