首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The post-nappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent pre-collisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.  相似文献   

2.
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol + hy-normative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative sequence is exposed in the Dents de Bertol area (center of intrusion). PT calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 °C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#cpx = 83–89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment.  相似文献   

3.
Two modern geodynamic models on the Alps are tested: plate tectonics (mechanical effects of colliding lithospheric mega-units), and mantle diapirism (mechanical and geochemical effects of ultra-lowvelocity bodies, rising from the low-velocity layer or asthenosphere). Verification occurs by means of comparing the expectations of these models (their ‘prognoses’) with the great wealth of available ‘diagnostic’ facts on the geology and geophysics of the Alps. It appears that the picture of the Alpine structural evolution, drafted by plate tectonics, is inadequate to describe the observed reality, whereas the idea of mantle diapirism, combined with crustal corrosion (geochemical oceanization) and gravity tectonics, provides a functionally correct model, that logically and coherently explains the entire Alpine cycle of orogeny.In the concluding remarks comparisons are made with the formation of island arcs in the western Pacific, the origin of the basin-and-range topography and volcanicity along the eastern margin of the Pacific, as well as the Sunda arc of Indonesia.  相似文献   

4.
5.
Quartz veins syntectonic to distinct folding events in metasediments from the Voltri Group (Ligurian Alps) were studied in order to compare fluid and structural evolution. Studied veins (VS1, VS2, VS3) pertain to three distinct generations of folds (F1, F2, F3) that formed during the retrograde metamorphic evolution. Two types of fluids characterize the different generations of veins and are represented essentially by aqueo-carbonic mixtures of moderate salinity with decreasing densities (1.01–0.41 g/cm3). The chemical evolution is characterised by a progressive decrease of H2O, from early fluids associated with opening of VS1 and VS2 (XCO2≈0.08) to fluids related to VS3 formation (XCO2≈0.3). The close match between the fluids in VS1 and VS2 suggests that the development of two superimposed systems of folds (F1 and F2 folds) occurs under very similar PT conditions, during a progressive and continuous deformational event at glaucophanic and/or barroisitic metamorphic grade. A different evolution is outlined for the formation of VS3 during low greenschist grade. Successive isochores allow us to define a retrograde decompression path for the Voltri Group. Present results indicate that fluid inclusions are powerful markers to constrain the PTt conditions of different folding events.  相似文献   

6.
International Journal of Earth Sciences - In the Alps, relicts of pre-Variscan basement are composed of metagreywackes and metapelites (partly migmatic) with intercalated amphibolites and sheets of...  相似文献   

7.
8.
The Triassic succession of the central Southern Alps (Italy) is stacked into several units bounded by south-verging low-angle thrust faults, which are related to two successive steps of crustal shortening. The thrust surfaces are cut by high-angle extensional and strike-slip faults, which controlled the emplacement of hypabissal magmatic intrusions that post-date thrusts motions. Intrusion ages based on SHRIMP U–Pb zircon dating span between 42 ± 1 and 39 ± 1 Ma, suggesting close time relationships with the earliest Adamello intrusion stages and, more in general, with the widespread calc-alkaline magmatism described in the Southern Alps. Fission-track ages of magmatic apatites are indistinguishable from U–Pb crystallization ages of zircons, suggesting that the intrusion occurred in country rocks already exhumed above the partial annealing zone of apatite (depth < 2–4 km). These data indicate that the central Southern Alps were already structured and largely exhumed in the Middle Eocene. Although we describe minor faults affecting magmatic bodies and local reactivations of older structures, no major internal deformations have occurred in the area after the Bartonian. Neogene deformations were instead concentrated farther south, along the frontal part of the belt.  相似文献   

9.
Field mapping and structural analysis have allowed us to characterise the fault geometry and the post-metamorphic tectonics of an area located in the Northern Cottian Alps (inner Western Alps). Two main faulting stages were distinguished here. The first (Oligocene?-Early Miocene) is related to the development of an E–W-striking left-normal shear zone. This shear zone is interpreted as an antithetical of two regional, N–S right-lateral structures: the Col del Lis-Trana Deformation Zone (LTZ) and the Colle delle Finestre Deformation Zone (CFZ). The second faulting stage (post-Early Miocene) is related mainly to the development of N–S normal faults, coeval with the extensional reactivation of the LTZ and the CFZ. We discuss this kinematic evolution in the framework of the geodynamic evolution of the Western Alps.  相似文献   

10.
11.
Petrological and structural observations from the Ambin pre-alpine basement dome and from its Briançonnais and Piedmont covers show an early D1 nappe-forming event overprinted by a major D2 (+?D3) ductile shearing deformation. The D1 event is characterised by garnet-blueschist facies metamorphic assemblages retrogressed to greenschist facies conditions during D2 then D3 stages near the top of the dome. North-verging D1 structures preserved in the core of the dome are consistent with alpine evolutionary models, in which exhumation of HP–LT metamorphic alpine rocks occurs initially in a north–south direction. To cite this article: J. Ganne et al., C. R. Geoscience 336 (2004).  相似文献   

12.
The Nevado-Filábride complex is the lowest tectonic unit of the Betic Zone sensu stricto (ss) of the Betic Cordilleras (S.E. Spain). The upper series of this complex consists of a metamorphosed sequence intruded by basic and ultrabasic igneous rocks. High-pressure metamorphism in the eclogite and blueschist facies is recorded in the metabasites, but this was partially obliterated by further successive metamorphic stages in the almandine-amphibolite and greenschist facies.Coronitic and granoblastic eclogites appear side by side in the large stocks of basic rocks. The coronitic eclogites originate from coarse-to medium-grained olivine gabbros, and the granoblastic eclogites from fine-grained basic rocks (dolerites and porphyritic basaltic rocks). Higher chemical mobility and rate of diffusion, as well as the availability of fluids during the eclogite facies metamorphism, are responsible for the greater degree of recrystallization found in the granoblastic eclogites. The availability of fluids during this metamorphic stage was controlled by the difference in the hydration of the protolith and by variable proximity to surrounding water-rich metasediments.The minerals in the eclogites are chemically homogeneous, suggesting that they are almost completely equilibrated, even in the coronitic eclogites. The estimated equilibrium P-T conditions were found to be the same (approximately 550° C at 12 kbar pressure) in both coronitic and granoblastic eclogites, and it has, therefore, been deduced that the coronitic eclogites do not represent the first and lower-grade step of a prograde metamorphism in which the granoblastic eclogites are the higher-grade step.No relationship was found between shearing and eclogite crystallization. Nevertheless, a first fabric/foliation developed in the later blueschist facies stage, and syntectonic growth of the minerals was detected in glaucophane-bearing rocks.The further metamorphic evolution of the metabasites from high-to intermediate-pressure conditions is documented by the formation of minerals belonging to albiteepidote and almandine-amphibolite facies assemblages. The application of the amphibole zonation model, in order to deduce the P-T path, does not give realistic values.High-pressure metamorphism is related to an early subduction event in the Betic Cordilleras, with a later more-or-less isothermal uplift to shallower levels.  相似文献   

13.
Deformation textures and c-axis preferred orientations of quartz phenocrysts from porphyric dikes of the Alpine »Root Zone« have been formed under conditions of greenschist to low amphibolite facies. It is shown that the deformation textures as shear planes and kink bands, boudins, grain boundary sutures, subgrains, coarse and fine recrystallized grains, deformation lamellae and fractures are developed in a chronological sequence during first increasing and later decreasing temperatures.The c-axis orientations are chiefly influenced by kinking during the early stage of metamorphism and later by recrystallization but not by the initial orientations of the c-axes. The shape of crossed-girdles is related to the type of strain.At the beginning of polygonization during increasing temperatures basal-a glide as a dominant glide mechanism is replaced by prism-c glide and vice versa during decreasing temperatures. The average angular velocity of c-axes is 0.4 per 1 % flattening.
Zusammenfassung In Quarz-Einsprenglingen aus porphyrischen Gängen der alpinen »Wurzelzone« sind während der Lepontin-Metamorphose unter Bedingungen der Grünschiefer- bis unteren Amphibolitfazies Deformationstexturen gebildet und die C-Achsen geregelt worden. Bei aufsteigender und wieder sinkender Temperatur entwickeln sich nacheinander Scherflächen und Knickbänder, Boudins, Grenzflächensuturen, Subkörner, grobe und feine Rekristallisate, Deformationslamellen und Brüche.Die C-Achsen-Regelungen werden vor allem durch Verknickung im frühen Metamorphosestadium und später durch Rekristallisation geprägt, jedoch nicht durch die Ausgangslage der C-Achsen. Die Form von Kreuzgürtelregelungen steht zur Art des Strains in Beziehung.Bei aufsteigender Temperatur wechselt mit beginnender Polygonisation der dominierende Deformationsmechanismus von Basis/a/-Gleitung zu Prismen/c/-Gleitung und wieder umgekehrt bei sinkender Temperatur. Die durchschnittliche Drehgeschwindigkeit der Quarz-C-Achsen beträgt 0.4 pro 1% Einengung.

Résumé Dans les dykes porphyriques de la Zone des racines des Alpes, des textures de déformation et des orientations préférentielles des axes c dans les phénocristaux de quartz ont été engendrées dans des conditions qui vont du facies des schistes verts à celui des amphibolites de faible degré. Au cours de la montée, puis de la descente de la température se sont développés successivement: plans de cisaillement, kinkbands, boudins, sutures intergranulaires, sous-grains, recristallisations grossières et fines, lamelles de déformation et fractures.L'orientation des axes c est influencée principalement par le kinking pendant les premiers stades du métamorphisme et par la recristallisation dans la suite, mais pas par la position initiale des axes. La forme des fabriques en »ceintures croisées« dépend du type de déformation.Au début de la polygonisation, lors de la montée de la température, le mécanisme dominant passe d'un glissement basai a à un glissement prismatique c. L'inverse se produit lors de la baisse de température. La vitesse angulaire moyenne des axes c est de 0,4 par 1 % d'aplatissement.

Tizi-n', 300 , , , , . . , . : - . - , . , , . . .
  相似文献   

14.
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.  相似文献   

15.
Three groups of thermal springs with temperatures close to 70 °C discharge both in the core (at Bagni di Vinadio and Terme di Valdieri) and on the external margin (at Berthemont-Les-Bains) of the Argentera Massif. Detailed structural field analysis carried out on the hydrothermal sites allows us to delineate both a model of Alpine tectonic evolution of the Argentera Massif and the patterns of hydrothermal circulation that were active during its final exhumation. The observed fault rock assemblages provide information relative to deformation that occurred in viscous, frictional-to-viscous and frictional crustal regimes. During the Early Miocene, the Bersezio Fault Zone and the Fremamorta Shear Zone, two main mylonitic shear zones, mainly accommodated regional transpression and provided pathways for fluid flow promoting mineral reactions in greenschist facies. During the Late Miocene–Early Pliocene, frictional-to-viscous deformation affected the massif, which underwent predominant transpression in the internal sectors and extension on the external margin. During the Plio-Pleistocene, deformation in frictional condition accompanied the final exhumation of the massif in a transpressive regime and resulted in the development of the NW–SE striking cataclastic zones. The hydraulic properties of these structures mainly influence the patterns of the active thermal circulations and the localization of the recharge and discharge zones. At Berthemont these faults represent conduits, whereas at Vinadio and Valdieri they form complex systems of conduits and barriers. In these two latter sites, the cataclastic faults compose flower structures that constrain laterally the thermal fluid flows while intensely fractured granites sited at depth constitute a highly-transmissive geothermal reservoir. Less permeable migmatitic gneisses overlaying the granites prevent a massive infiltration of the cold fluids at depth. This context favours within the high-permeability fractures granites the development of buoyancy-driven flows which combined with topographically-driven flows, provided the conditions for the upflow of the high-temperature waters.  相似文献   

16.
International Journal of Earth Sciences - During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial...  相似文献   

17.
The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.  相似文献   

18.
The Leventina Nappe represents one of the lowermost exposed units in the Alpine nappe stack and corresponds to a slice of the European margin that was entrained into the Alpine continental accretionary prism during the Tertiary tectonic event. This study yields details regarding the tectonic and metamorphic history of the Leventina Nappe, through detailed analysis of structures and shear zone patterns, and the examination of the Si-content of white mica along a north-south profile. The Leventina Nappe underwent three phases of ductile deformation. Foliation S1 is mostly sub-parallel to the regionally dominant structural fabric (the S2 foliation). S2 foliation is penetratively developed in the structurally higher portions of the Leventina Nappe toward the Simano Nappe, while it is only weakly developed in the core of the Leventina Nappe. A 50 to 200 m wide mylonite zone, with a D2 top-to-NW sense of shear marks the boundary to the Simano Nappe. Throughout the Leventina Nappe only small-scale D2 shear bands (mm to cm wide) are observed, showing a top-to-NW sense of shear. Deformation phase D3 locally generated a vertical axial plane foliation (S3) associated with the large-scale D3 Leventina antiform.Microtextural evidence and phengite geobarometry were used to constrain the temperature and pressure conditions of equilibration of the Leventina Gneisses. Highest Si (pfu) values are preserved in the core of phengitic micas and reflect pressure and temperature conditions of around 8 kbar at 550 °C and 10 kbar at 650 °C in the northern and southern parts of the Leventina Nappe, respectively. Lower Si (pfu) values from the rims of white micas correspond to a metamorphic pressure of ca. 5 kbar during the exhumation of the unit. These metamorphic conditions are related to the underthrusting of the thinned European margin into the continental accretionary prism during late Eocene time. These new data allow us to propose a kinematic model for the Leventina Nappe during the Tertiary Alpine tectonics.  相似文献   

19.
Summary Eclogitised metabasics of early-Alpine age are described from the northern Dora-Maira nappe (internal Pennidic, western Italian Alps), a tectonic element which has become widely known for the coesite-bearing assemblages discovered in its southern part. The P-T conditions inferred in this paper for the eclogitic peak (P = 9–13 kbar, T = 500 ± 50 °C) are much lower than those proposed in the southern Dora-Maira by Chopin (1987) for the coesite-bearing unit. Consequently, only the latter underwent a peculiar early-Alpine evolution at extremely high-pressures and temperatures, while the northern Dora-Maira nappe was eclogitised at P-T conditions comparable to those of the other internal Pennidic units. The post-eclogitic path proposed here for the northern Dora-Maira occurred at isothermal conditions or at slightly increasing temperatures.
Les éclogites dans la nappe Dora-Maira septentrionale (Alpes Occidentales, Italie)
Resumé Metabasites éclogitiques d'âge éoalpine sont décrites dans la nappe Dora-Maira septentrionale (Pennique interne, Alpes occidentales italiennes), une unité connue pour la découverte de parageneses à coesite dans le secteur meridional. Les conditions P-T de la recrystallization éclogitique proposées dans ce travail (P = 9–13 kbar, T = 500 ± 50 °C) sont plus basses que les conditions suggerées parChopin (1987) pour les roches de l'unité à coesite. D'autre part ces éstimations des pressions et témperatures sont comparables à celles des autres nappes Penniques internes. La trajectoire post-éclogitique proposée içi pour le Dora-Maira septentrional est caracterisée par une diminution de pression à témperatures plus ou moins constantes (ou légèrment croissantes).
  相似文献   

20.
The remanent magnetization of the andesitic cover of the Sesia-Lanzo Zone has been studied from 16 sites along three transversal sections. The remanent magnetization of the rock is stable and it appears to be primary after a conglomerate test. The mean direction of magnetization is consistent for all sites, but for one exception, with satisfactory values of statistical parameters. Therefore no deformation structures postdating the acquisition of remanent magnetization can be inferred from palaeomagnetic data. The mean direction of magnetization (11 sites, 152 specimens) is: D=135.9, I=–2.9, with 95=8.8. No tectonic correction can yet be made.
Zusammenfassung Die natürliche remanente Magnetisierung der Andesiten, die die Bedeckung der Sesia-Lanzo Zone bilden, ist an 16 Orten gemessen worden, die entlang drei Querdurchschnitten liegen. Das Gestein besitzt eine stabile NRM, die auf Grund eines Konglomeratstest die ursprüngliche sein müßte. Alle Orte, die annehmbare statistische Werte aufweisen, außer einem, haben die gleiche Magnetisierungsrichtung. Die paläomagnetischen Messungen zeigen keine Strukturen aufeinanderfolgender Deformation bei dem Magnetisierungsvorgang. Die durchschnittliche Magnetisierungsrichtung (11 Orte, 152 Gesteinsproben) ist: D = 135,9, I = –2,9, mit 95 = 8,8. Keine tektonische Korrektur wird bisher eingerechnet.

Résumé L'aimantation rémanente des andésites qui constituent la couverture de la Zone Sesia-Lanzo a été mesurée en 16 endroits disposés le long de trois sections transversales. La roche a une aimantation rémanente stable, qui, d'après le test du conglomérat, devrait être originelle. Tous les endroits qui présentent des valeurs statistiques acceptables ont, sauf un, la même direction d'aimantation. Les mesures paléomagnétiques ne révèlent donc pas de structures de déformation consécutive à l'acquisition de l'aimantation rémanente. La direction moyenne de l'aimantation (11 sites, 152 échantillons) est: D=135.9, I=–2.9 avec 95=8.8. On n'a pas apporté, pour l'instant, de correction tectonique.

, Sesia-Lanzo, 16- , . , , , . , , , . , . (11 , 152 ) : D=135,9; =–2,9 95=8,8. .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号