首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mathematical model of the biological process occurring in a modified biofilm airlift suspension reactor is presented. When compared with a traditional wastewater treatment plant, a biofilm airlift suspension process has major advantages, such as higher oxygen levels in the bulk fluid and lower space requirements. The limited volumes obtained with this technique generally do not allow to reach the high times of contact required for an efficient removal of nitrogen that normally are characterized by a slower kinetics than carbonaceous compounds. To avoid this problem, supports for attached biomass growth were inserted in the reactor. Both physical and biological aspects were incorporated into the presented model to simulate the removal processes of the substrates. A sensitivity analysis was performed, and the model was validated using experimental results obtained at a lab-scale plant. This model can accurately estimate the removal rate in different boundary conditions providing the details of the water quality profiles through the reactor and in the attached biomass. The model thus represents a valid aid for design purposes and for the management of treatment plants that use these uncommon reactors. The model also provides the required hydraulic retention time for a complete nitrification and the appropriate recirculation ratio. The results have shown the full-scale applicability of this treatment due to its efficiencies coupled to the advantages of its low impact, low space requirement and low sludge production.  相似文献   

2.
Performance of moving bed biofilm reactor system for a real hospital wastewater (HW) was experimented, modelled, and optimized using response surface methodology. Prior to conducting laboratory tests, design of the experiments was evaluated to minimize any prediction error. Statistical analyses demonstrated the models’ validity and adequacy for anticipation of the removal of BOD and COD by the process. The models predictions (with desirability of 0.98) were found to be in very good agreement with confirmative experiments results. The results indicated that under convenient operating conditions of the studied variables (packing rate 70%, HRT 24 h, and MLSS 3000 mg/L), the removal efficiencies for BOD and COD were 97.8 and 95.6%, respectively. Moreover, kinetics of the biological process showed that removal of organic matters for the tested wastewater adheres to modified Stover–Kincannon model with a correlation coefficient of 0.998. Ratio of BOD to COD of 0.6 (optimal range for biological treatment normally is >0.5) suggests acceptable efficiency of the reactor for decomposing organic load. A high overall efficiency of the process and fulfilling the related standards make this system an appropriate option for treating HDW.  相似文献   

3.
分析了移动床生物膜反应器(MBBR)的工艺原理及目前研究存在的缺陷,提出MBBR的挂膜过程对反应器的启动时间、生物相及废水处理效果有重要的影响。生物强化技术可以增强对特定污染物的降解能力,改善原有生物处理体系对难降解有机物的去除效能。在简介生物强化技术作用机制及影响因素的基础上,探讨将生物强化技术应用于MBBR启动过程中的必要性和可能性,对提高污水处理能力具有一定的参考价值,可以带来良好的经济和环境效益。  相似文献   

4.
水解-好氧组合工艺处理玉米淀粉废水的机理   总被引:4,自引:2,他引:4  
根据水解-好氧处理系统中碳水化合物、蛋白质、挥发性有机酸和微生物的变化规律,探讨了利用水解-好氧组合工艺处理玉米淀粉废水的机理,得出废水中碳水化合物的降解速率远大于蛋白质.在水力停留时间为10h的第一水解段,蛋白质的去除率仅为16%,而碳水化合物的去除率却高达91%.在此组合工艺中,水解段均具有去除废水中BOD5、CODCr和提高废水可生化性的双重作用,但水解段对BOD5的去除率小于对CODCr的去除率.好氧段的主要作用是去除CODCr、氮、磷.好氧生物膜中出现钟虫、累枝虫和轮虫组合是整个工艺出水水质良好的生物学标志.  相似文献   

5.
Polyvinyl alcohol-containing desizing wastewater discharged within final textile wastewater has a great impact to the environment due to its poor biodegradability. An improved lab-scale hybrid anaerobic baffled reactor was developed to treat desizing wastewater. The modification was achieved by increasing the height of hybrid anaerobic baffled reactor and application of proper effluent recycle enabled to increase the ability of entrapping microbe-rich small particles in the reactor and prompted the formation of granules. The significant difficulty in hybrid anaerobic baffled reactor operation is the slow start-up procedure, which is crucial to the overall polyvinyl alcohol-containing desizing wastewater treatment. Therefore, the ability of a hybrid anaerobic baffled reactor, treating desizing wastewater, to achieve a prompt start-up was studied at lab-scale. Results showed that inoculated with anaerobic granular sludge and adoption of effluent recycle during start-up, the system demonstrated a good performance of polyvinyl alcohol removal efficiency (above 17.2 %) and satisfactory stability of pH and alkalinity in effluent (range around 7.4–8.0 and 700–920 mg/L, respectively) and the sludge appeared obviously granulation. Thus, the prompt start-up was achieved after 60 days. The start-up strategy used for this process has achieved its goals by creating an active microbial population. The improved lab-scale hybrid anaerobic baffled reactor proved to be an efficient reactor configuration for the treatment of desizing wastewater, which favored the prompt start-up of hybrid anaerobic baffled reactor. The results also provide evidence to modify the design of anaerobic baffled reactor to improve reactor performance.  相似文献   

6.
An innovative two-stage AD system to treat food waste with cow manure is presented to address the problem of ammonia inhibition and improve the stability of methanogenic reactor. The liquid digestate recirculation in the first phase was adopted to enhance the hydrolysis rate and the solubilization of organic matter. A stable long-term run (80 days) was found. The reactor configuration and the digestate post-treatment with natural zeolite led to a low ammonia concentration in reactor outlet. The biogas production in the methanogenic reactor was very stable and high: The specific biogas production in the second phase was equal to 0.68–0.92 Nm3/kgTVSadded and the average methane concentration was equal to 85%. Good performances were also found for the first-stage digestate, with 75% soluble COD removal efficiency. The high reactor performances were related to two-stage configuration, no ammonia and VFA inhibition.  相似文献   

7.
This paper presents the findings of the study on treatment of domestic wastewater using a laboratory scale Hybrid Upflow Anaerobic Sludge Blanket (HUASB) reactor. The reactor with a working volume of 5.9 L and plastic cut rings as packing media was operated at varying Hydraulic Retention Time (HRT) for a period of 110 days. While the COD removal varied from 75–86%, the BOD removal was in the range of 70–91%. Methane content in the biogas was 62±3%. VFA levels fluctuating between 100 and 186 mg/L (as acetate) did not pose operational problems such as souring of the reactor. During the treatment, nutrient levels exhibited an increasing trend. HUASB system could be designed with very short HRT of 3.3 hours, which will reduce the treatment cost significantly. It appears to be a promising alternative for the treatment of domestic wastewater in developing countries like India  相似文献   

8.
The coal mining industry is in need of effective, locally available, low-cost ameliorants that can be used to treat the toxic materials generated by surface mining and coal cleaning plants. Ashes generated by fluidized bed combustors may locally fit these criteria. Samples of fly ash and bottom ash were acquired from facilities in West Virginia, Texas, and California and evaluated for their ability to generate alkalinity. The results show that FBC ash has the potential to produce solutions of high alkalinity depending on the CaO and CaCO3 contents. The relative content of CaO, and to a lesser extent Ca(OH)2, determines the rate at which alkalinity will be produced. The neutralization potential is the best parameter to evaluate the potential of an FBC ash to produce alkalinity. Because the composition of ashes from a facility vary over time and because no single parameter will accurately evaluate the rate at which alkalinity will be produced, the rate of alkaline production must be evaluated by controlled leach experiments.  相似文献   

9.
Septic tanks are very commonly used wastewater collection systems throughout the world, and especially in rural areas. In this study, the use of moving-bed biological reactors (MBBR) for the treatment of septic tank effluent (STE) was examined. The study was conducted in two phases. In Phase I, the performance of septic tanks from four projects working under different operational conditions and with different service lives was followed to determine the parameters that required further treatment. In Phase II, four specially designed continuous flow pilot-plant MBBRs and one laboratory-scale batch reactor were tested for their efficiency in treating STE. Experiments were carried out at various temperatures (8–25 °C) and with different hydraulic retention times (HRTs). MBBR effectively reduced STE’s nutrients and chemical oxygen demand by 90 and 85 %, respectively, over 180 days of operation. The average ammonia removal rate at 25 °C increased from 0.279 to 0.540 kg N/m3 when the reactor HRT changed from 5.7 to 13.3 h. Under these conditions, the ammonia removal kinetics were successfully correlated with a theta model with an average θ value of 1.054. The biofilm morphology showed a stable and global biomass coverage (>70 %) and a high percentage of live cells. A thinner biofilm was observed when the MBBR operated at high temperatures. The results of this study showed that MBBR is a promising technology for post-treatment of septic tank effluent.  相似文献   

10.
11.
An enhanced start-up of an upflow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000–7000 mg/L) and COD (5000–13000 mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms’ metabolism inside the granules.  相似文献   

12.
A laboratory-scale sequencing airlift bioreactor continuously treating high-level 4-chloroaniline (4-ClA) wastewater was used for studying the effect of 4-ClA on the characteristics and microbial community of aerobic granular sludge. The granulation of aerobic sludge and efficient pollutant removal performance were developed via shortening sludge settling time and gradually increasing influent 4-ClA concentration to around 400 mg L?1. However, the granular sludge reactor deteriorated with the 4-ClA loading rate above 0.8 kg m?3 d?1. Denaturing gradient gel electrophoresis and real-time quantitative PCR were applied to investigate the microbial community succession during the start-up and recovery of bioreactor. The results showed that the performance of granular reactor was significantly influenced by the microbial community of aerobic granule, and stable aerobic granule was dominated with β-Proteobacteria (61.28 %), Flavobacteriales, Planctomycetales, Clostridiales, and Acidobacteria. Since Thauera (21.55 %) related to the genus β-Proteobacteria was abundant in the stable 4-ClA-degrading granular sludge, it was speculated as the main 4-ClA-degrading bacteria. Under high chloroaniline level, the sludge granulation may maintain the stability of the bioreactor via adjusting the composition of microbial community and abundance of functional microorganism. This paper provided useful information for better understanding the change of microbial community characteristics under high-level toxic organic pollutants and process optimizing.  相似文献   

13.
14.
In this study, the performance of moving-bed biofilm sequencing batch reactor in operating the anaerobic/anoxic/oxic (A2O) process for treatment of wastewaters containing nitrogen and phosphorous was evaluated. For this purpose, a pilot system with two bench-scale sequencing batch reactors with a total volume of 30 L and functional volume of 10 L was used. The installation was elaborated using plexiglass, in which 60% of the functional volume consisted of PVC suspended carriers (Kaldnes K3) with a specific surface area of 560 m2/m3. The independent variables used in this study were hydraulic retention time (HRT) (1.5, 2, 2.5, 3, and 3.5 h) and the initial organic load (300, 500, 800, 1000 mg O2/L). The results showed impressive performance in the case of an initial organic load of 300 mg O2/L and HRT of 3 h with maximum removal of COD and TN, respectively, by 95.1 and 89.8%. In the case of an initial organic load of 1000 mg O2/L and HRT of 3.5 h, the maximum total phosphorus removal was 72.3%. Therefore, according to the analysis of data obtained by different HRTs, it was revealed that the system of A2O has greater efficiency in removing organic matter from wastewater in the shortest possible time.  相似文献   

15.
A continuous reactor based on the fluidized bed technique was developed in order to study the kinetics and the mechanisms of the initial stages of weathering of albite. Simultaneous determination of Si, Al and Na and the observed low concentrations of the dissolved elements which were always at levels below saturation with respect to possible secondary precipitates, indicate that formation of a residual layer of a few tens of angstroms occurred at the surface of the feldspar. The composition of this layer, enriched in Si and/or Al, is strongly dependent on the pH of the aqueous solution. The formation of the layer is followed by the establishment of a quasi-steady state during which the dissolution of albite tends to become stoichiometric.  相似文献   

16.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

17.
The aim of the study was to investigate the nutrient removal rate of three wastewater protozoan isolates. The study was carried out in a laboratory-scale batch reactor for a period of 120 h. in a four batch study. Aliquot samples were withdrawn from the reactor every 24 h. for the analysis of phosphate, nitrate, nitrite, ammonia, chemical oxygen demand, dissolved oxygen and pH, using standard methods. The results obtained in the different batches among the three isolates showed PO4 2? removal rate ranging from 0.04 to 0.52 mg-PO4 2?/L/h. while NO3 ? nitrate removal rates ranged from 0.08 to 0.16 mg-NO3 ?/L /h. Also NO2- and NH3 rates were observed to range between 0.022 and 0.087 mg-NO2 ?/L /h. 0.05 and 0.16 mg-NH3 ?/L /h, respectively. For the physicochemical parameters, there was no observed COD decrease; rather there was an increase and this was irrespective of isolates and experimental batches. However, dissolved oxygen concentration decreased drastically (below 1 mg/L) at the end of each batch while pH show a decrease after an initial 24 h. period and thereafter increased. This trend was also irrespective of isolates and experimental batches. Overall, the study has been able to show the effect of the test isolates on nutrient removal rates and other physicochemical parameters (COD, DO and pH) in activated sludge mixed liquor.  相似文献   

18.
19.
Nitrogen removal from hypersaline wastewater was successfully started up by inoculating estuarine sediments for 140 days. Efficient ammonia and total nitrogen removal was sustained under specific ammonia loading of 0.016–0.139 kg N/[kg VSS day] in a sequencing batch reactor. Stable nitrite accumulation was observed during nitrification. The specific ammonia consumption rate was higher than the value of freshwater activated sludge and salt-acclimated freshwater activated sludge. With methanol as carbon source, specific nitrite reduction rate of halophilic denitrifiers was much less than the freshwater counterpart. Halophilic activated sludge was characterized as good settling and flocculation prosperity with small floc size and net-like sludge structure. The abundance of ammonia-oxidizing bacteria outnumbered ammonia-oxidizing archaeas in both estuarine sediments and the activated sludge. Nitrifier population was dominated by the halophilic members of genus Nitrosomonas. This study demonstrated the application of mixed halophilic consortia for efficient nitrogen removal, overcoming the limits and difficulties of applying freshwater bacteria for saline wastewater treatment.  相似文献   

20.
Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days?1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号