首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The original article to which this erratum refers was published in Earthquake Engineering and Structural Dynamics 1999; 28 :1405–1425.  相似文献   

6.
It seems that the explicit KR‐α method (KRM), which was developed by Kolay and Ricles, is promising for the step‐by‐step integration because it simultaneously integrates unconditional stability, explicit formulation, and numerical dissipation together. It was shown that KRM can inherit the numerical dispersion and energy dissipation properties of the generalized‐α method [1] for a linear elastic system, and it reduces to CR method (CRM), which was developed by Chen and Ricles [2] if ρ = 1 is adopted, where ρ is the spectral radius of the amplification matrix of KRM as the product of the natural frequency and the step size tends to infinity. However, two unusual properties were found for KRM and CRM, and they might limit their application to solve either linear elastic or nonlinear systems. One is the lack of capability to capture the structural nonlinearity, and the other is that it is unable to realistically reflect the dynamic loading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The original article to which this erratum refers was published in Earthquake Engineering and Structural Dynamics 2003; 32 :417–442.  相似文献   

9.
It seems that the explicit KR‐α method (KRM) is promising for the step‐by‐step integration because it simultaneously integrates unconditional stability, explicit formulation, and numerical dissipation together. It was shown that KRM can inherit the numerical dispersion and energy dissipation properties of the generalized‐α method (GM) for a linear elastic system, and it reduces to CR method (CRM) if ρ = 1is adopted, where ρ is the spectral radius of the amplification matrix of KRM as the product of the natural frequency and the step size tends to infinity. However, two unusual properties were found for KRM and CRM, and they might limit their application to solve either linear elastic or nonlinear systems. One is the lack of capability to capture the structural nonlinearity, and the other is that it is unable to realistically reflect the dynamic loading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The paper under discussion presents a series of quasi‐static tests used to examine the behavior of steel reinforced concrete (SRC) walls subjected to high axial force and lateral cyclic loading. A total of six wall specimens were designed, including five SRC walls and one reinforced concrete (RC) wall. In the ‘Summary’ section of the discussed paper, the authors state that: ‘The use of SRC walls has gained popularity in the construction of high‐rise buildings because of their superior performance over conventional RC walls’. The authors also proposed that, the SRC wall specimens showed increased flexural strength and deformation capacity relative to their RC wall counterpart. The discussion is prompted to rectify some statements and conclusions of the paper under discussion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
14.
15.
16.
Three main topics including the floor motion action mechanism, the test frame design, and the target spectrum simulation presented in the paper are discussed specifically. Floor motion action mechanism is critical in understanding the seismic performance of architectural nonstructural components. Seismic sensitiveness and earthquake response properties of the nonstructural components should be considered in the design of the test frame for the shaking table test. Target spectrum simulation is also a challenging job in the shaking table test, in which dynamic characteristics of the specimen, performance of the shaking table facilities, and the control techniques should be all considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
The original article to which this Erratum refers was published in Earthquake Engineering and Structural Dynamics 2003; 32 : 1075–1098.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号