首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, possibilities and limits of the application of REE3+ luminescence (especially the Nd3+ 4F3/24I9/2 emission) as structural probe are evaluated. Important factors controlling the Nd3+ luminescence signal are discussed, including effects of the crystal-field, crystal orientation, structural state, and temperature. Particular attention was paid to the study of the accessory minerals zircon (ZrSiO4), xenotime–(Y) (YPO4), monazite–(Ce) (CePO4) and their synthetic analogues. Based on these examples we review in short that (1) REE3+ luminescence can be used as non-destructive phase identification method, (2) the intensities of certain luminescence bands are strongly influenced by crystal orientation effects, and (3) increased widths of REE3+-related emission bands are a strong indicator for structural disorder. We discuss the potential of luminescence spectroscopy, complementary to Raman spectroscopy, for the quantitative estimation of chemical (and potentially also radiation-induced) disorder. For the latter, emissions of Nd3+-related centres are found to be promising candidates.  相似文献   

2.
The pressure-induced structural transformation of rare earth, non-stoichiometric silicates, (REE9.33(SiO4)6O2, RE = La, Ce, Nd, Eu, and Gd) with the apatite structure type, were investigated by X-ray diffraction, photoluminescence, far-infrared spectroscopy, and DFT calculations. A pressure-induced degradation of symmetry from P6 3 /m to P6 3 occurs with increasing pressure. The transition is due to the tilting of SiO4 tetrahedra and reduced symmetry constraints on one of the O atoms in the tetrahedron. The critical transition pressure increased from ~13 GPa in La9.33(SiO4)6O2 to ~25 GPa in Gd9.33(SiO4)6O2 with the decrease in lanthanide cation size. The high-pressure phase shows an unexpectedly low value for the bulk modulus over a narrow pressure range (below ~30 GPa), as compared with the low-pressure phase, especially for the structure with larger rare earth elements. High-pressure studies of alkaline earth-doped samples (Nd8 A 2(SiO4)6O2 where A = Ca, Sr) showed that the pressure for the phase transition is mainly related to the size of lanthanides that occupy the large channels along the c axis of the apatite structure type.  相似文献   

3.
WO3-modified TiO2 polyscale crystals were fabricated successfully using the hydrothermal technique. The as-prepared samples were characterized using powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy and UV–vis spectroscopy. The photocatalytic application of these synthesized samples was confirmed by photocatalytic degradation of fast green dye solution under sunlight and UV irradiation. The degradation efficiency was analyzed by measuring the parameters such as percent transmittance, chemical oxygen demand and percent decomposition of the dye solution. It was noted that the photodegradation efficiency of the samples varies with added amounts of WO3 content. The highest photodegradation efficiency was obtained using 2WT sample where the pace of decomposition was 70.5% under UV light and 81.3% under sunlight.  相似文献   

4.
In this study, we investigated the structural properties of Urfa stone (US) doped with erbium oxide (Er2O3). Solid US was powdered by using an agate mortar, and its elemental composition was determined using inductive coupling plasma (ICP) methods. Varying amounts of Er2O3 (5, 10, 20, 30, and 40%) were added as a dopant to the US powder using mechanical alloying methods. The resultant samples were sintered at 1000 °C for 1 h. The structural properties of the Er2O3-doped US samples were subsequently investigated using X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and photoluminescence methods. Results from the XRD analysis of the Er2O3-doped US powder indicated two crystalline phases: (1) calcium oxide (CaO) or lime and (2) Er2O3. After the samples were sintered at 1000 °C, CaO, Er2O3, calcium carbonate (CaCO3), and mixed crystalline phases were observed. Results from the FTIR analysis of the Er2O3-doped US samples indicated absorption bands at 711.91, 872.08, and 1396.87 cm?1 in the spectra. Finally, photoluminescence analysis results indicated a shift in the emission and excitation bands to longer and shorter wavelengths, respectively, in the solid state (non-aqueous media) US-Er complex.  相似文献   

5.
Evidence for the presence of Sn2+ in an octahedral interstitial site in synthetic and natural cassiterite (SnO2) is presented. The absorption and relative absorption spectral peaks measured are similar to ones found in Sn2+-doped KI by absorption spectrophotometry and Sn2+-doped soda-silica glass by reflection spectroscopy. The estimated quantity of interstitial Sn2+ present is found by calculating that needed to balance the uncompensated M3+ impurity in substitutional Sn4+ sites where M3+ is mainly Al3+ and Fe3+. Estimates of the oscillator strengths of three Sn2+ bands detected by absorption spectrophotometry in the synthetic crystal are given. The interstitial Sn2+ content in synthetic and natural cassiterite is not affected by heating,60Co gamma irradiation, or UV light treatment with a high pressure xenon-mercury lamp.  相似文献   

6.
The formation constants of neodymium complexes in chloride solutions have been determined spectrophotometrically at temperatures of 25 to 250°C and a pressure of 50 bars. The simple ion, Nd3+, is dominant at 25°C, whereas NdCl2+ and NdCl2+ are the dominant species at elevated temperatures. Equilibrium constants were calculated for the following reactions:Nd3+ + Cl = NdCl2+ β1,Nd3+ + 2 · Cl = NdCl+2 β2.The values of β1 were found to be identical within experimental error to the values reported by Gammons et al. (1996) but substantially different from those proposed by Stepanchikova and Kolonin (1999). The values of β2 obtained in this study agree relatively well with those of Gammons et al. (1996); differences are greatest at intermediate temperature and reach a maximum of one half an order of magnitude at 200°C.Theoretical estimates of β1 and β2 by Haas et al. (1995) using the revised Helgeson-Kirkham-Flowers (HKF) equation of state predict lower stability of NdCl2+ and NdCl2+ at temperatures above 150°C than determined in this study. A new fit to the HKF equation of state is therefore proposed, which yields values for β1 and β2 similar to those obtained experimentally.Using the formation constants reported in this study, we predict that typical seafloor hydrothermal vent fluids will contain a maximum concentration of Nd of ∼2 ppb. This value is several orders of magnitude lower than would be required to explain the levels of Nd mobility commonly reported for seafloor hydrothermal systems and suggests that other ligands may be more important than Cl in transporting rare earth elements in the Earth’s crust.  相似文献   

7.
Calcite crystals were grown from solution with single-crystal dimensions up to 3 mm and doped up to 0.1 at% with Nd3+ ions. Phase purity was verified by powder X-ray diffraction. The concentration of Nd3+ was measured by energy-dispersive spectrometry and Rutherford backscattering spectrometry. Micro X-ray fluorescence mapping of the calcite grains indicates uniform Nd distribution in as-grown crystal grains. X-ray absorption fine structure suggests that Nd3+ is substituted for Ca2+ with local lattice distortion. Temperature-dependent near-infrared spectroscopy of Nd3+ impurities in calcite reveals large inhomogeneous linewidths and smooth line profiles that are characteristic of glassy hosts, though the samples are well crystallized.  相似文献   

8.
9.
Extended X-ray absorption fine-structure (EXAFS) spectroscopy is used to characterize the local coordination of selected rare-earth elements (Nd3+, Sm3+, Dy3+, Yb3+) coprecipitated with calcite in minor concentrations from room-temperature aqueous solutions. Fitting results confirm substitution in the Ca site, but first-shell Nd-O and Sm-O distances are longer than the Ca-O distance in calcite and longer than what is consistent with ionic radii sums for sixfold coordination in the octahedral Ca site. In contrast, first-shell Dy-O and Yb-O distances are shorter than the Ca-O distance and are consistent with ionic radii sums for sixfold coordination. Comparison of Nd-O and Sm-O bond lengths with those in lanthanide sesquioxides and with ionic radii trends across the lanthanide series suggests that Nd3+ and Sm3+ have sevenfold coordination in a modified Ca site in calcite. This would require some disruption of the local structure, with an expected decrease in stability, and possibly a different charge compensation mechanism between Nd and Sm vs. Yb and Dy. A possible explanation for the increased coordination for the larger rare-earth elements involves bidentate ligation from a CO3 group. Because trivalent actinides such as Am3+ and Cm3+ have ionic radii similar to Nd3+, their incorporation in calcite may result in a similar defect structure.  相似文献   

10.
Several samples of wulfenite, PbMoO4, varying in colour from colourless to yellow, orange and red, have been characterised by means of IR and optical absorption spectroscopy and by microprobe analyses. A distinct pleochroic band group with absorption maxima centred at 3,380 and 3,150 cm?1 can be seen in the IR spectra of wulfenite single-crystals, indicating the presence of hydroxyl groups. The pleochroic and thermal behaviour of the OH stretching bands along with deuteration experiments, as well as results obtained from synthetic flux-grown samples, exclude the presence of submicroscopic hydrous mineral inclusions as their primary origin. The pleochroic scheme and the band positions were used to postulate a model for the OH incorporation mode, based on the assumption of vacancies on Mo and Pb sites in the structure of this ‘nominally anhydrous mineral’. Optical absorption spectra of coloured natural samples show a broad and polarised band around 23,000–24,000 cm?1, preceding the fundamental UV absorption edge, which has been identified as the reason for the colour of the mineral. The comparison with synthetic PbMoO4 single-crystals, doped with variable amounts of Cr6+, yielded conclusive evidence that trace amounts of the CrO4 2? anion group, substituting for MoO4 2?, determine the variable colour. Besides, in one sample, trace amounts of Nd3+ have been spectroscopically identified.  相似文献   

11.
The topotactic oxidation and delithiation reaction from triphylite, Li(Fe,Mn)PO4, leading to ferrisicklerite, Li<1(Fe3+,Mn2+)PO4, was investigated under hydrothermal conditions. A cuboid cut from a triphylite single-crystal (Palermo Mine, New Hampshire, USA) with the composition Li0.93(3)(Fe2+ 0.733(6),Fe3+ 0.015(1),Mn2+ 0.210(4),Mg0.063(2))1.021(8)P1.00(2)O4 in addition with ground bulk material were treated with KMnO4 and 30 % H2O2(aq) as oxidizing agent in a 0.1 N hydrochloric acid solution in the temperature range between 60 and 200 °C. At 120 °C a rim of 0.1 mm thickness of ferrisicklerite had formed around the core of unreacted triphylite. The sharp reaction boundary was clearly visible, due to the reddish brown absorption colors of ferrisicklerite, compared to colorless triphylite. Using single-crystal X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron probe micro-analysis (EPMA) and 57Fe-Mössbauer spectroscopy the product ferrisicklerite was characterized and its composition determined as Li0.30(7)(Fe2+ 0.049(1)Fe3+ 0.65(2)Mn2+ 0.218(5)Mg0.062(2))0.98(1)P1.01(3)O4, with unit cell parameters a?=?4.795(1), b?=?9.992(4), and c?=?5.886(2) Å. EPMA investigations across the reaction boundary showed no changes in the concentrations of Fe, Mn, Mg, and P. In contrast, SIMS measurements clearly proved the delithiated state of the ferrisicklerite product. Polarization microscopy revealed that the orientation of the ferrisicklerite rim was the same as that of the original triphylite single-crystal, confirming the strictly topotactic character of the reaction.  相似文献   

12.
In this study, arsenic as an environmental top-ranked hazardous substance was efficiently removed by a novel adsorbent fabricated by magnetite Fe3O4 nanoplates decorated on anodized aluminum oxide (AAO) nanofibers. AAO nanofibers were prepared by anodic polarization method, and then Fe3O4 nanoplates were grown on AAO-based substrate by hydrothermal method to fabricate AAO/Fe3O4 nanosorbent. Morphology of the fabricated adsorbents was characterized by field emission scanning electron microscopy (FE-SEM), and their crystallinity was studied by X-ray diffraction (XRD). Arsenic (III) removal potential of the proposed adsorbent from contaminated water samples was investigated by the determination of As(III) amounts in the samples by inductively coupled plasma optical emission spectroscopy before and after adsorption process at sub-μg L?1 levels. The results showed that without pre- and post-treatments such as pH adjustment, As(III) was removed effectively from contaminated water samples by using the proposed adsorbent. AAO/Fe3O4 sorbent showed excellent ability to remove 0.1 mg L?1 As(III) from water samples up to 96 % uptake. Freundlich adsorption isotherm model was used to interpret the As(III) adsorption on proposed sorbent. The Freundlich isotherm parameters n and k F were obtained to be 2.2 and 10.2, respectively, representing the high affinity of proposed adsorbent for arsenic removal.  相似文献   

13.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   

14.
《Chemical Geology》2002,182(2-4):203-225
Accessory gangue scheelite (CaWO4) from the Archaean Mt. Charlotte lode Au deposit can be divided into two types with different rare earth element (REE) signatures. In some scheelite grains, specific REE signatures are reflected by different cathodoluminescence colours, which can be used to map their often complex oscillatory intergrowths. Domains with specific REE contents from two grains were sampled for Sm/Nd, Rb/Sr and Pb isotopic analyses using a micro-drilling technique.Type I scheelite is strongly enriched in middle REE (MREE) and Eu anomalies are either absent or slightly positive. Four fragments collected from Type I regions of two crystals have initial 87Sr/86Sr and εNd values ranging from 0.70141 to 0.70163 and +2.5 to +3.5, respectively, and Pb isotope ratios reflecting the composition of greenstone sequence. This may indicate that Nd and Pb have their source, either locally or regionally, in the greenstones. Basic greenstone lithologies have 87Sr/86Sr<0.7015, and the radiogenic Sr signatures indicate that part of the Sr originated from felsic lithologies located either within or beneath the host greenstone pile. Alternatively, the Sr signature may have evolved from preferential leaching of a Rb-rich mineral during hydrothermal alteration of the greenstone.The REE patterns of Type II scheelite are either flat or MREE-depleted and have strong positive Eu anomalies. Three fragments collected from Type II regions of the same two crystals have initial 87Sr/86Sr ratios and εNd values between 0.70130 and 0.70146, and +1.1 to +2.6, respectively, and Pb isotope signatures that are once again similar to that of the greenstone. This implies that 87Sr/86Sr ratios in Type II fluids were closer to those of the host dolerite (0.7008–0.7013), due to more extensive fluid interaction with the dolerite.A positive correlation between Na and REE suggests that REE3+ are accommodated by the coupled substitution REE3++Na+=2 Ca2+ into both Type I and Type II scheelite. This is consistent with a fractional crystallisation model to explain the change in REE patterns from Type I to Type II, but not with a model involving different coupled substitutions and fluids from different origins. We propose that the complex REE and isotopic signatures of scheelite at Mt. Charlotte are related to small (<m) to medium (<km) scale processes involving mixing between “fresh” batches of hydrothermal fluid with fluids that had already been involved in extensive wall-rock alteration.The very high-εNd values measured in some scheelites have been previously used to link gold mineralisation with komatiites containing unusually high Sm/Nd ratios. However, tiny (<20 μm) grains of secondary hydroxyl-bastnäsite were found within micro-fractures of one scheelite grain containing an extremely high-εNd signature. The hydroxyl-bastnäsite probably formed during recent REE redistribution within the scheelite as a result of meteoric fluid circulation. The scale of this cryptic low-temperature alteration is sufficient to explain the anomalously high-εNdi values observed in scheelite from Western Australia.  相似文献   

15.
The accumulation of structural damage that is created in minerals upon corpuscular irradiation, has two apparently contrarious effects on their luminescence behaviour. First, irradiation may cause the generation of luminescent defect centres, which typically results in broad-band emissions. Such defect emissions are characteristic of low levels of radiation damage. Second, radiation damage depletes in general the luminescence of minerals, which is associated with broadenings and intensity losses of individual emission lines. Minerals that have suffered elevated levels of irradiation hence tend to be virtually non-luminescent. This review paper aims at giving an overview of the possible correlations of radiation damage and emission characteristics of minerals. After a brief, introductory summary of the damage-accumulation process and its causal corpuscular radiation, an array of examples is presented for how internal and/or external irradiation may change appreciably the emission of rock-forming and accessory minerals. As a detailed example for the complexity of changes of emissions upon damage accumulation, preliminary results of a case study of the photoluminescence (PL) of synthetic CePO4 irradiated with 8.8 MeV He ions are presented. Irradiation-induced spectral changes include (i) the initial creation, and subsequent depletion, of a broad-band, defect-related PL emission of orange colour, and (ii) gradual broadenings and intensity losses of PL lines related to electronic transitions of rare-earth elements, eventually leading to gradual loss of their splitting into multiple Stark levels (shown for the 4F3/24I9/2 transition of Nd3+).  相似文献   

16.
The photoreduction efficiency of toxic hexavalent chromium into non-toxic trivalent chromium was studied using local low-cost material and modern technology. The materials involved different iron–titanium oxide nanopowders synthesized via simple hydrothermal–hydrolysis process. X-ray diffraction and high-resolution transmission electron microscope were employed to study the structural properties of the as-prepared samples. The effects of molar ratio (Fe/Ti) and hydrothermal temperature on spectroscopic properties have been investigated using Fourier transform infrared FT-IR spectroscopy. The photocatalytic performance of hexavalent chromium was systematically studied at various conditions including initial concentration of Cr(VI), hydrothermal temperature and Fe/Ti ratios of mixed iron–titanium oxide powders. It has been found that the highest photoreduction efficiencies of Cr(VI) were 95.7 and 86.2% at initial concentrations 10 and 60 ppm of Cr(VI), respectively. The synthesized mixed Fe2O3–TiO2 photocatalyst exhibited higher efficiency of about 88% under visible light irradiation. The as-prepared mixed oxide catalyst exhibited high photocatalytic conversion efficiency and recycling stability in comparison with different commercial catalysts.  相似文献   

17.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

18.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

19.
Abstract The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was derived from tholeiitic magma series with higher TiO2, REE abundance and Fe3+ / Fe2+ ratio; norite-gabbro was derived from calc-alkali magma series with lower TiO2, Fe3+ / Fe2+ ratio and REE abundance and much lower HREE abundance, which suggests that the source of the norite-gabbro magma was deeper and controlled by eclogite facies. Geochemical characteristics of both plutonic rocks are similar to those of island-arc basalts, such as relatively high contents of Ba, Pb and Sr and relatively low contents of Nb, Zr and Ni. The Sr, Nd isotopic characteristics of the Lajimiao norite-gabbro complex are similar to those of ophiolites. Its 8Nd values are constant, about +2; whereas 8Sr values have wide variation from — 6.4 to +31.2 and positively correlate with Na2O, H2O+ and CO2 contents and the Fe3+ / Fe2+ ratio. The ?Nd—Nd / Th, ?Nd—La/Nb and ?Nd—Ba/Nb diagrams clearly show that there were significant components of terrigenous sediments in the mantle source of the Lajimiao norite-gabbro complex. It suggests that large amount of sediments had been carried into the mantle by the subducted ancient Qinling sea plate during the Palaeozoic.  相似文献   

20.
The incorporation of hydrogen into ferrosilite, Fe-bearing enstatite and orthopyroxene containing different trivalent cations (Cr3+ and Al3+, Cr3+ and Fe3+) was investigated experimentally at 25 kbar. Hydrogen concentration was determined by FTIR-spectroscopy on oriented crystal sections and by secondary ion mass spectroscopy, whereas Mößbauer spectroscopy and optical spectroscopy were used to characterise the valence state of Fe in orthopyroxene. Results suggest that hydrogen incorporation in ferrosilite is achieved by a similar mechanism as in pure enstatite. In Cr-bearing samples, however, hydrogen incorporation is reduced by the presence of other trivalent cations by an increased tendency to form Tschermaks substitutions, e.g. Si T 4+ + Mg M1 2+ ? Al T 3+ + Cr M1 3+ . Thus, hydrogen solubility in natural orthopyroxenes from the Earth’s mantle, containing significant amounts of Cr3+, Al3+, and Fe3+, may be much more limited than expected from their trivalent cation content, as a large fraction of the trivalent cations does not participate in H-incorporating reactions as 2 Mg M1 2+ ? M M1 3+ + VM1 + H i + .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号