首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the hydrologic and meteorological data in the Yarkand River Basin during 1957–2008, the nonlinear hydro-climatic process was analyzed by a comprehensive method, including the Mann–Kendall trend test, wavelet analysis, wavelet regression analysis and correlation dimension. The main findings are as following: (1) The annual runoff, annual average temperature and annual precipitation showed an increasing trend during the period of 1957–2008, and the average increase extent in runoff, temperature and precipitation was 2.234 × 10m3/10 year, 0.223 °C/10 year, and 4.453 mm/10 year, respectively. (2) The nonlinear pattern of runoff, temperature and precipitation was scale-dependent with time. In other words, the annual runoff, annual average temperature and annual precipitation at five time scales resulted in five patterns of nonlinear variations respectively. (3) Although annual runoff, annual average temperature and annual precipitation presented nonlinear variations at different time scales, the runoff has a linear correlation with the temperature and precipitation. (4) The hydro-climatic process of the Yarkand River is chaotic dynamic system, in which the correlation dimension of annual runoff, annual average temperature and annual precipitation is 3.2118, 2.999 and 2.992 respectively. None of the correlation dimensions is an integer, and it indicates that the hydro-climatic process has the fractal characteristics.  相似文献   

2.
Satellite observations were used to test the validity of previously identified favourable conditions for the formation of freshwater lenses, identify additional potential occurrences, and model modern potential recharge in the Raudhatain Watershed (3696) in northern Kuwait. Favourable conditions include infrequent yet intensive precipitation events, drainage depressions to collect the limited runoff, and presence of conditions (e.g. high infiltration capacity) that promote groundwater recharge and preservation (e.g. underlying saline aquifer) of infiltrating groundwater as freshwater lenses floating over saline aquifer water due to differences in density. Specifically, the following field and satellite‐based observations were noted for the Raudhatain Watershed: (1) Over ~30 precipitation events were identified from the Tropical Rainfall Measuring Mission precipitation data (1998–2009); (2) slope is gentle (2 m/km), and the surface is largely (80%) covered by alluvial deposits with high infiltration capacities (up to 9 m/day); (3) no flows and long‐term ponding were reported at the watershed outlet or detected from Landsat thematic mapper images; (4) infiltration is high based on increases in soil moisture content (from an advanced microwave scanning radiometer) and vegetation index following large precipitation events; and (5) freshwater lenses that overlie highly saline [total dissolved solids (TDS): >35 000] unconfined aquifers underlying the watershed are absent in the southern regions, where infiltrating fresh water mixes with the less saline groundwater (TDS: <10 000). Twenty potential locations (size: 1 to 75 km2) for freshwater lens development were identified in northern Kuwait, and continuous rainfall–runoff models (Soil Water and Assessment Tool) were applied to provide a first‐order estimation of the average annual recharge in the watershed (127 × 106 m3) and freshwater lenses (8.17 × 106 m3). Results demonstrate the settings for enhanced opportunities for groundwater recharge, outline the amounts of and preservation conditions for the groundwater feeding the freshwater lenses, and highlight potential applications and locations of freshwater lenses in similar settings elsewhere in the Arabian Peninsula and beyond. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The quantification of natural recharge rate is a prerequisite for efficient and sustainable groundwater resources management. Since groundwater is the only source of water supply in the West Bank, it is of utmost importance to estimate the rate of replenishment of the aquifers. The chloride mass-balance method was used to estimate recharge rates at different sites representing the three groundwater basins of the Mountain Aquifer in the West Bank. The recharge rate for the Eastern Basin was calculated as between 130.8 and 269.7 mm/year, with a total average replenishment volume of 290.3 × 106 m3/year. For the Northeastern Basin, the calculated recharge rate ranged between 95.2 and 269.7 mm/year, with a total average recharge volume of 138.5 × 106 m3/year. Finally, the recharge rate for the Western Basin was between 122.6 and 323.6 mm/year, with a total average recharge volume of 324.9 × 106 m3/year. The data reveal a replenishment potential within the estimated replenishment volumes of previous studies for the same area. Also, the range was between 15 and 50% of total rainfall, which is still within the range of previous studies. The geological structure and the climate conditions of the western slope were clearly play an important role in the increment of total volume. In some cases, such as the geological formations in the Northeastern Basin, the interaction between Eocene and Senonian chalk formations result in minimum recharge rates.

Citation Marei, A., Khayat, S., Weise, S., Ghannam, S., Sbaih, M. & Geyer, S. (2010) Estimating groundwater recharge using the chloride mass-balance method in the West Bank, Palestine. Hydrol. Sci. J. 55(5), 780–791.  相似文献   

4.
A hydrological–lithostratigraphical model was developed for assessment of transmission losses and groundwater recharge from runoff events in arid water courses where hydrological and meteorological records are incomplete. Water balance equations were established for reaches between hydrometric stations. Because rainfall and tributary flow data are scarce, lateral inflow, which is an essential component of the water balance equation, could not be estimated directly. The solution was obtained by developing a method which includes a hydrological–lithostratigraphical analogy. This is based on the following assumptions: (a) runoff resulting from a given rainfall event is related to the watershed surface lithology; (b) for a given event, the spatial distribution of runoff reflects the distribution of rainfall: and (c) transmission losses are uniquely related to the total inflow to the reach. The latter relationship, called the loss function, and the water balance equation comprise a model which simultaneously assesses lateral inflow and transmission losses for runoff events recorded at the terminal stations. The model was applied to three reaches of the arid Nahal Tsin in Israel. In this case study, the transmission losses were of the same order of magnitude as the flow at the major hydrometric stations. The losses were subdivided into channel moistening, which subsequently evaporates, and deep percolation, which recharges groundwater. For large runoff events, evaporation was substantially smaller than the losses. The mean annual recharge of groundwater from runoff events in the Tsin watershed was 4·1×106 m3, while the mean annual flow volume at the major stations ranged from 0·6 to 1·5×106 m3. Once in 100 years, the annual recharge may be seven times higher than the mean annual value, but the recharge during most years is very small. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A case study on the responses of streamflow to climate change in the Toutun River basin was carried out based on data analysis of streamflow, precipitation, and temperatures during the past 50 years.Temporal series of the streamflow change in the Toutun River basin was analyzed and tested using the Mann-Kendall nonparametric test. Results revealed that the annual runoff of the Toutun River had been in a monotonic decreasing trend for the past 50 years. Compared with the 1950s and 1960s, the annual runoff in the 1990s decreased by 4.0×105 m3 and 7.2×105 m3. The precipitation did not show monotonic trend during the past 50 years, but the annual temperature increased by 1.12℃ since the 1950s. Further data analysis indicated that the monthly runoff of the Toutun River decreased significantly from August to October, with precipitation displaying the similar pattern of seasonal change. Analysis suggests that the reduction of streamflow in the Toutun River basin is possibly caused by the seasonal change of precipitation, especially the precipitation reduction in summer, and temperature increases.  相似文献   

6.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Calibrating a comprehensive, multi‐parameter conceptual hydrological model, such as the Hydrological Simulation Program Fortran model, is a major challenge. This paper describes calibration procedures for water‐quantity parameters of the HSPF version 10·11 using the automatic‐calibration parameter estimator model coupled with a geographical information system (GIS) approach for spatially averaged properties. The study area was the Grand River watershed, located in southern Ontario, Canada, between 79° 30′ and 80° 57′W longitude and 42° 51′ and 44° 31′N latitude. The drainage area is 6965 km2. Calibration efforts were directed to those model parameters that produced large changes in model response during sensitivity tests run prior to undertaking calibration. A GIS was used extensively in this study. It was first used in the watershed segmentation process. During calibration, the GIS data were used to establish realistic starting values for the surface and subsurface zone parameters LZSN, UZSN, COVER, and INFILT and physically reasonable ratios of these parameters among watersheds were preserved during calibration with the ratios based on the known properties of the subwatersheds determined using GIS. This calibration procedure produced very satisfactory results; the percentage difference between the simulated and the measured yearly discharge ranged between 4 to 16%, which is classified as good to very good calibration. The average simulated daily discharge for the watershed outlet at Brantford for the years 1981–85 was 67 m3 s?1 and the average measured discharge at Brantford was 70 m3 s?1. The coupling of a GIS with automatice calibration produced a realistic and accurate calibration for the HSPF model with much less effort and subjectivity than would be required for unassisted calibration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The glacier mass balance, area change, and glacier runoff in the Yarkant River Basin (YRB) and the Beida River Basin (BRB) were estimated from 1961 to 2006 by employing a modified monthly degree‐day model. Comparisons between the simulated and observed mass balance, equilibrium line altitude, and glacier runoff suggest that the model can be used to analyze the long‐term changes of glacier mass balance and runoff in the YRB and the BRB. The glacier mass balances of the YRB and the BYB both have a significantly decreasing trend with ?4.39 mm a‐1 and ?8.15 mm a‐1 from 1961 to 2006 because of a significant increase in ablation caused by increasing summer air temperatures, especially since 1996. The total runoff in glacier areas has a significant increasing trend with 0.23 × 108 m3 a‐1 and 0.02 × 108 m3 a‐1 in the YRB and the BRB, respectively. By comparing the mean mass balance during the period 1961 to 1986 with that of the 1987 to 2006, the BRB glacier mass balance's sensitivity to temperature is at 0.33 m a‐1 °C, nearly twice as much as that of the YRB at 0.16 m a‐1 °C. The difference between the glacier temperature sensitivity in the YRB and the BRB is primarily because the glacier elevation band area weighted altitude of the YRB is about 700 m higher than that of BRB. The glacier elevation band area weighted summer air temperature in the YRB is around 2 °C lower than that of the BRB. Therefore, the annual positive degree‐day of the YRB and the BRB increases by about 21.0 °C and 77.3 °C respectively when the summer air temperature increases by 1 °C, resulting into more glacier ablation and runoff in the BRB than in the YRB. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
To date, most studies of the effectiveness of geotextiles on soil erosion rates and processes have been conducted in laboratory experiments for less than 1 h. Hence, at Hilton (52°33′ N, 2°19′ W), UK, the effectiveness of employing palm‐mat geotextiles for soil erosion control under field conditions on arable loamy sands was investigated. Geotextile‐mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Duplicate runoff plots (10 m × 1 m on a 15° slope) had five treatments (bare, permanent grass, Borassus total plot cover, Borassus buffer strip and Buriti buffer strip). Borassus covered plots had about 72% ground cover and to differentiate between this treatment and Borassus buffer strips, the former treatment is termed Borassus completely‐covered. Runoff and eroded soil were collected from each bounded plot in a concrete gutter, leading to a receptacle. Results from 08/01/2007–23/01/2009 (total precipitation = 1776·5 mm; n = 53 time intervals) show that using Borassus buffer strips (area coverage ~10%) on bare soil decreased runoff volume by about 71% (P > 0·05) and soil erosion by 92% (P < 0·001). Bare plots had nearly 29·1 L m?2 runoff and 2·36 kg m?2 soil erosion during that period. Borassus buffer strip, Buriti buffer strip and Borassus completely‐covered plots had similar effects in decreasing runoff volume and soil erosion. Runoff volumes largely explain the variability in soil erosion rates. Although buffer strips of Borassus mats were as effective as whole plot cover of the same mats, the longevity of Borassus mats was nearly twice that of Buriti mats. Thus, use of Borassus mats as buffer strips on bare plots is highly effective for soil erosion control. The mechanisms explaining the effectiveness of buffer strips require further studies under varied pedo‐climatic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Glacial retreat and the thawing of permafrost due to climate warming have altered the hydrological cycle in cryospheric‐dominated watersheds. In this study, we analysed the impacts of climate change on the water budget for the upstream of the Shule River Basin on the northeast Tibetan Plateau. The results showed that temperature and precipitation increased significantly during 1957–2010 in the study area. The hydrological cycle in the study area has intensified and accelerated under recent climate change. The average increasing rate of discharge in the upstream of the Shule River Basin was 7.9 × 106 m3/year during 1957–2010. As the mean annual glacier mass balance lost ?62.4 mm/year, the impact of glacier discharge on river flow has increased, especially after the 2000s. The contribution of glacier melt to discharge was approximately 187.99 × 108 m3 or 33.4% of the total discharge over the study period. The results suggested that the impact of warming overcome the effect of precipitation increase on run‐off increase during the study period. The evapotranspiration (ET) increased during 1957–2010 with a rate of 13.4 mm/10 years. On the basis of water balance and the Gravity Recovery and Climate Experiment and the Global Land Data Assimilation System data, the total water storage change showed a decreasing trend, whereas groundwater increased dramatically after 2006. As permafrost has degraded under climate warming, surface water can infiltrate deep into the ground, thus changing both the watershed storage and the mechanisms of discharge generation. Both the change in terrestrial water storage and changes in groundwater have had a strong control on surface discharge in the upstream of the Shule River Basin. Future trends in run‐off are forecasted based on climate scenarios. It is suggested that the impact of warming will overcome the effect of precipitation increase on run‐off in the study area. Further studies such as this will improve understanding of water balance in cold high‐elevation regions.  相似文献   

12.
In this study, long‐term discharge data and climate records, such as temperature and precipitation during 1977–2006, have been used to define basin climatic and hydrologic regimes and changes. Discharge analyses at four key gauging stations (Eagle, Stevens Village, Nenana, and Pilot Station) in the Yukon River Basin show that the runoff in the cold season (November to April) is low with small variations, whereas it is high (28 500–177 000 ft3/s; 810–5000 m3/s) with high fluctuations in the warm season (May to October). The Stevens Village Station is in the upper basin and has similar changes with the flow near basin outlet. Flow increases in May (61 074 ft3/s; 1729 m3/s) and September (23 325 ft3/s; 660 m3/s); and decreases in July (35 174 ft3/s; 996 m3/s) and August (6809 ft3/s; 193 m3/s). Discharge in May at the Pilot Station (near the basin outlet) shows a positive trend (177 000 ft3/s; 5010 m3/s). Daily flow analyses show high fluctuation during the warm season and very low flow during the cold season; the 10‐year average analyses of daily flow at Pilot Station show a small increase in the peak and its timing shifted to a little earlier date. The annual flow, average of 227 900 ft3/s (6450 m3/s) with high inter‐annual fluctuations, has increased by 18 200 ft3/s (or 8%; 520 m3/s) during 1977–2006. From 1977 to 2006, basin air temperature in June has increased by 3.9 °F (2.2 °C) and decreased by 10.5 °F (5.8 °C) in January. A strong and positive correlation exists between air temperature in April and discharge in May, whereas a strong and negative correlation relates August temperature and September discharge. Negative trend during 1977–2006 is observed for precipitation in June (0.6 in.; 15 mm) with a confidence over 93%. Precipitation in August and September has strong and positive correlations with discharge in September and October at basin outlet; the precipitation in other months has weak correlation with the discharge. The mean annual precipitation during 1977–2006 increased by 1.1 in. (or 8%; 28 mm), which contributes to the annual flow increase during the study period. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Study on vegetation ecological water requirement in Ejina Oasis   总被引:11,自引:0,他引:11  
The Ecological Water Requirement (EWR) of desert oasis is the amount of water required to maintain a normal growth of vegetation in the special ecosystems. In this study EWR of the Ejina desert oasis is estimated through the relational equation between normalized difference vegetation index (NDVI), productivity and transpiration coefficient, which was established by a combination of the RS, GIS, GPS techniques with the field measurements of productivity. The results show that about 1.53×108 m3 water would be needed to maintain the present state of the Ejina Oasis, and the ecological water requirement would amount to 3.49×108 m3 if the existing vegetation was restored to the highest productivity level at present. Considering the domestic water requirement, river delivery loss, oasis vegetation water con-sumption, farmland water demand, precipitation recharge, etc., the draw-off discharge of the Heihe River (at Longxin Mount) should be 1.93×108―2.23 ×108 m3 to maintain the present state of the Ejina Oasis, and 4.28×108―5.17×108 m3 to make the existing vegetation be restored to the highest productiv-ity level at present.  相似文献   

15.
Quaternary alluvium, ranging in thickness from a few to 100 meters underlain by Precambrian rocks of metamor-phic and igneous origin, constitutes an important source of ground water in Wadi Al-Yammaniyah, Saudi Arabia. The purpose of this report is to assess the hydraulic properties, quality of water, and estimated change in storage in waterbearing rocks in the area. The results of eight pumping tests carried out in hand-dug, large-diameter wells, indicate that the hydraulic conductivity of the alluvial aquifer ranges from 5.6 × 10−5 to 1.85 × 10−3 cm/second (3.36 × 10−5 to 1.11 × 10−3 m/minute) and that its storativity varies from 8.23 × 10−2 to 1.17 × 10−1. The aquifer is replenished by sporadic but intensive rainfall of short duration. The present withdrawal is only about 10 percent of the annual recharge which is estimated at 52 × 106 m3. It is shown that there is a substantial potential for the future development of potable ground water which would be required for the development of the area.  相似文献   

16.
The newest observational evidence on asymmetrical deformation of the Earth   总被引:3,自引:0,他引:3  
IntroductionWhat is the shape of the Earth? Does it change continuously? It is a scientific question since the ancient times and is still being observed and explored at present. In 250 BC, Greek scholar Eratosthene supposed the shape of the Earth to be spherical according to the observations to the Sun and estimated the perimeter of the Earth to be 4 000 km (King-Hele, 1976) according to the camel-walking distance. Until the 16th century, the Earth was considered to be a very symmetrical …  相似文献   

17.
In‐stream sediment transport plays an important role in delivery of sediment‐associated terrestrial elements. Investigating the history of fluvial sediment regime responding to changes in natural and anthropogenic driving forces provides a theoretical basis for establishment of optimal strategies on catchment management. The present study aims to systematically detect the patterns of change in sediment load at two key hydrological stations (Pengshan and Gaochang) in the Minjiang River and quantitatively evaluate the relative contributions of regional precipitation change and multiple local human activities to the observed sediment variations. Abrupt change in annual sediment load was detected in 1990 at Pengshan and in 1968, 1980 and 1992 at Gaochang. Compared with the baseline period of 1957–1990, precipitation decline and human activities had respectively contributed to 5 × 106 t and 2 × 106 t of reduction in mean annual sediment load at Pengshan during 1991–2007. For the entire Minjiang basin, taking 1956–1968 as the baseline period, precipitation decline and human activities had relatively contributed to 10 × 106 t and 18 × 106 t of reduction in mean annual sediment load at Gaochang during 1969–1980. During 1981–1992, precipitation decline had relatively contributed to 5 × 106 t of reduction in mean annual sediment load, but human activities had led to 3 × 106 t of increase in mean annual sediment load. During 1993–2009, 13 × 106 t and 17 × 106 t of reduction in mean annual sediment load may be attributed to precipitation decline and human activities, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
《水文科学杂志》2013,58(3):418-431
Abstract

The water balance of the closed freshwater Lake Awassa was estimated using a spreadsheet hydrological model based on long-term monthly hydrometeorological data. The model uses monthly evaporation, river discharge and precipitation data as input. The net groundwater flux is obtained from model simulation as a residual of other water balance components. The result revealed that evaporation, precipitation, and runoff constitute 131, 106 and 83 × 106 m3 of the annual water balance of the lake, respectively. The annual net groundwater outflow from the lake to adjacent basins is 58 × 106 m3. The simulated and recorded lake levels fit well for much of the simulation period (1981–1999). However, for recent years, the simulated and recorded levels do not fit well. This may be explained in terms of the combined effects of land-use change and neotectonism, which have affected the long-term average water balance. With detailed long-term hydrogeological and meteorological data, investigation of the subsurface hydrodynamics, and including the effect of land-use change and tectonism on surface water and groundwater fluxes, the water balance model can be used efficiently for water management practice. The result of this study is expected to play a positive role in future sustainable use of water resources in the catchment.  相似文献   

19.
The large deep earthquake of January 21, 1906 is re-evaluated using old seismogram data and updated analysis techniques. From the P and pP-P time data the hypocentre parameters are determined as follows: origin time, 13h 49min 35s; latitude, 33.8°N; longitude, 137.5°E; depth, 340 km. The body-wave magnitude mB is re-evaluated from the amplitude and periods of P, PP and S waves. The average value of 7.4 is obtained. This value is the smallest among any values assigned previously to this shock, and it is denied that the earthquake is the world's largest deep shock in this century. The focal mechanism is estimated from the P-wave first motions and amplitude distribution of P and S waves. Synthetic body waves are used to constrain the mechanism and to determine the seismic moment. The mechanism solution suggests the down-dip compression typical of this region. A seismic moment of 1.5 × 1027 dyn · cm is obtained. This value and the re-evaluated value of mB are consistent with the moment-B relation obtained for other deep earthquakes.  相似文献   

20.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号