首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The oil sands industry has committed to returning the mine sites to a productive condition. The reconstructed soil covers must have sufficient available water holding capacity (AWHC) to supply enough moisture over the growing season, to promote vegetation. In order to assess the sustainability of various soil cover alternatives, a generic, system dynamic watershed model entitled GSDW was used along with the available historical meteorological records to estimate the maximum soil moisture deficit and annual evapotranspiration fluxes. A probabilistic framework was adopted; consequently, frequency curves of the maximum annual moisture deficit values are constructed and used to assess the probability that various reconstructed and natural watersheds can provide the associated moisture demands. In general, the study showed a tendency for the reconstructed watershed to provide less moisture for evapotranspiration than natural systems. Watersheds of various soil types, layering, thicknesses and topography were studied. The gained knowledge was used to predict the possible performance of a hypothetical reclamation cover. The results indicated that the hypothetical cover performed in a similar manner to the thickest existing soil cover which confirmed a high probability of that cover to survive under the same existing climatic conditions. Moreover, this probabilistic framework was found to be useful for integrating information gained from natural watersheds (e.g. the canopy of mature natural systems and transfer the results to the reconstructed system). The results show that the canopy influenced the moisture deficit regime positively which signifies a greater possibility that reconstructed covers will adapt to vegetation type. In brief, the adopted approach enables better understanding of the response of reconstructed systems via multiple simulations of ‘what‐if’ scenarios using different soil/vegetation alternatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrologic modelling has been applied to assess the impacts of projected climate change within three study areas in the Peace, Campbell and Columbia River watersheds of British Columbia, Canada. These study areas include interior nival (two sites) and coastal hybrid nival–pluvial (one site) hydro‐climatic regimes. Projections were based on a suite of eight global climate models driven by three emission scenarios to project potential climate responses for the 2050s period (2041–2070). Climate projections were statistically downscaled and used to drive a macro‐scale hydrology model at high spatial resolution. This methodology covers a large range of potential future climates for British Columbia and explicitly addresses both emissions and global climate model uncertainty in the final hydrologic projections. Snow water equivalent is projected to decline throughout the Peace and Campbell and at low elevations within the Columbia. At high elevations within the Columbia, snow water equivalent is projected to increase with increased winter precipitation. Streamflow projections indicate timing shifts in all three watersheds, predominantly because of changes in the dynamics of snow accumulation and melt. The coastal hybrid site shows the largest sensitivity, shifting to more rainfall‐dominated system by mid‐century. The two interior sites are projected to retain the characteristics of a nival regime by mid‐century, although streamflow‐timing shifts result from increased mid‐winter rainfall and snowmelt, and earlier freshet onset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
T. Estrela 《水文科学杂志》2013,58(6):1154-1167
Abstract

Impacts on water resources produced by climate change can be exacerbated when occurring in regions already presenting low water resources levels and frequent droughts, and subject to imbalances between water demands and available resources. Within Europe, according to existing climate change scenarios, water resources will be severely affected in Spain. However, the detection of those effects is not simple, because the natural variability of the water cycle and the effects of water abstractions on flow discharges complicate the establishment of clear trends. Therefore, there is a need to improve the assessment of climate change impacts by using hydrological simulation models. This paper reviews water resources and their variability in Spain, the recent modelling studies on hydrological effects of climate change, expected impacts on water resources, the implications in river basins and the current policy actions.

Editor Z.W. Kundzewicz

Citation Estrela, T., Pérez-Martin, M.A., and Vargas, E., 2012. Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57 (6), 1154–1167.  相似文献   

6.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

7.
This commentary discusses the role of long‐term climate change in driving increases in soil erosion. Assuming that land use and management remain effectively constant, we discuss changes in the ability of rainfall to cause erosion (erosivity), using long daily rainfall data sets from southeast England. An upward trend in mean rainfall per rain day is detected at the century‐plus timescale. Implications for soil erosion and sediment delivery are discussed and evidence from other regions reviewed. We conclude that rates of soil erosion may well increase in a warmer, wetter world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Climate change will most likely cause an increase in extreme precipitation and consequently an increase in soil erosion in many locations worldwide. In most cases, climate model output is used to assess the impact of climate change on soil erosion; however, there is little knowledge of the implications of bias correction methods and climate model ensembles on projected soil erosion rates. Using a soil erosion model, we evaluated the implications of three bias correction methods (delta change, quantile mapping and scaled distribution mapping) and climate model selection on regional soil erosion projections in two contrasting Mediterranean catchments. Depending on the bias correction method, soil erosion is projected to decrease or increase. Scaled distribution mapping best projects the changes in extreme precipitation. While an increase in extreme precipitation does not always result in increased soil loss, it is an important soil erosion indicator. We suggest first establishing the deviation of the bias-corrected climate signal with respect to the raw climate signal, in particular for extreme precipitation. Furthermore, individual climate models may project opposite changes with respect to the ensemble average; hence climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that the impact of climate change on soil erosion can only accurately be assessed with a bias correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Ecosystems within the subhumid Boreal Plains of Northern Alberta host ecologically and commercially significant habitat and natural resources. However, these ecosystems exist under a delicate hydrologic balance that may be upset as the climate warms by 2 to 5 °C over the next century. In this study, numerical simulations were used to predict climate change impacts at a catchment composed of a mosaic of Boreal Plains ecosystems including a small pond, peatlands with sparse black spruce, and hillslopes with predominantly aspen forests. Simulations were conducted with a fully integrated groundwater–surface water code using a 2‐D model previously calibrated to a decade of hydrologic data that included a range in climatic conditions. Projections from 13 climate change scenarios were simulated from 2011 to 2090 and compared to a base case scenario that assumed no climate change. Results indicate peatland water levels may decline by up to 1 m; however, sensitivity simulations indicate that the decline in water levels may be moderated by several feedback mechanisms that restrict evaporative losses and moderate water level changes. In contrast, higher evapotranspiration losses from the aspen hillslopes are predicted to result in near‐surface soils becoming increasingly drier. Thus, the aspen may frequently be water stressed and increasingly susceptible to secondary maladies such as pests and disease. Reduced pond water levels are also predicted with the development of frequent ephemeral conditions in warmer and drier scenarios. Concurrent decreases in stream flow may further impact downstream ecosystems. Further research into the regional health and sustainability of Boreal Plains ecosystems is warranted and could benefit from the development of improved numerical tools capable of extending the processes considered.  相似文献   

11.
Gangcai Liu  Jianhui Zhang 《水文研究》2007,21(20):2778-2784
High frequency seasonal drought in purple soils (Regosols in FAO taxonomy) of the hilly upland areas of Sichuan basin, China, is one of the key restrictive factors for crop production. In order to manage irrigation and fertilizer application in these soils effectively, the soil water content in a sloped plot with 60 cm soil depth was measured by neutron probe devices to investigate the soil moisture regime during the 1998 rainy season after various amounts of rainfall events. The results showed that variation of soil moisture along the slope positions was highest in the top soil layer during the period of sporadic rainfall that did not induce any runoff. The coefficients of variation of soil moisture at various slope positions (upper, middle, and lower) are 17·36%, 8·95%, 10·25%, 8·58%, 8·05% and 9·21% at the 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and 60 cm soil depths respectively. When surface runoff occurred, the soil moisture dynamics at various positions on the plot were then very different. Soil water content decreased more rapidly on the upper slope than on the middle and lower slope positions. When both surface runoff and throughflow occurred, the soil moisture dynamics in the various layers showed a stable period (soil water content is near constant as time elapses) that lasted about 1 week. Also, the pattern of moisture dynamics is ‘decreasing–stabilization–decreasing’. Thus, irrigation and fertilization management according to the spatial and temporal features of soil moisture dynamics on sloped land can increase the water and fertilizer utilization efficacy by reducing their losses during the stable period. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

Based on a future temperature increase of 0.5°C and precipitation decrease of 25%, the climate elasticity of streamflow to precipitation and temperature changes in 12 Andean watersheds of the Coquimbo Region, north-central Chile, was assessed. Also, the possible relationships between this elasticity and specific physiographic characteristics of the watersheds (area, average elevation, slope distribution, terrain roughness, slope orientation, vegetation cover) were studied. Climate elasticity of streamflow ranged between 0 and 2.8. Watersheds presenting higher elevations, with a fairly well-balanced distribution of slope exposure tend to exhibit lower elasticity, which could be explained by the contribution of snowfall to the hydrological regime, more significant in those watersheds. Results should be considered when downscaling climate model projections at the basin scale in mountain settings. Finally, uncertainties in the approach, given by factors such as streamflow seasonality, data availability and representativeness and watershed characteristics, and therefore the scope of the results, are discussed.  相似文献   

13.
Probabilistic water balance modelling provides a useful framework for investigating the interactions between soil, vegetation, and the atmosphere. It has been used to estimate temporal soil moisture dynamics and ecohydrological responses at a point. This study combines a nonlinear rainfall–runoff theory with probabilistic water balance model to represent varied source area runoff as a function of rainfall depth and a runoff coefficient at hillslope scale. Analytical solutions of the soil‐moisture probability density function and average water balance model are then developed. Based on a sensitivity analysis of soil moisture dynamics, we show that when varied source area runoff is incorporated, mean soil moisture is always lower and total runoff higher, compared with the original probabilistic water balance model. The increased runoff from the inclusion of varied source area runoff is mainly because of a reduction in leakage when the index of dryness is less than one and evapotranspiration when the index of dryness is greater than one. Inclusion of varied source area runoff in the model means that the actual evapotranspiration is limited by less available water (i.e. water limit), which is stricter than Budyko’s and Milly’s water limit. Application of the model to a catchment located in Western Australia showed that the method can predict annual value of actual evapotranspiration and streamflow accurately. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

16.
Predicting long‐term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian (HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to identify the potential consequences of climate change on soil moisture and streamflow at the head watersheds ranging from low to high elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios. Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of prediction uncertainties. With predictive uncertainties taken into account, the most pronounced change in soil moisture and streamflow would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario. Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are predicted for all three scenarios at both low and high elevations. The hydrological predictions with quantified uncertainties from a HB model could aid more‐informed water resource management in developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Water resource assessment on climate change is crucial in water resource planning and management. This issue is becoming more urgent with climate change intensifying. In the current research of climate change impact, climate natural variability (fluctuation) has seldom been studied separately. Many studies keep attributing all changes (e.g. runoff) to climate change, which may lead to wrong understanding of climate change impact assessment. Because of lack of long enough historical series, impacts of climate variability have been always avoided deliberately. Based on Latin hypercube sampling technique, a block sampling approach was proposed for climate variability simulation in this study. The widely used time horizon (1961–1991) was defined as baseline period, and the runoff variation probability affected by climate natural variability was analysed. Allowing for seven future climate projections in total of three GCMs (CSIRO, NCAR, and MPI) and three emission scenarios (A1B, A2, and B1), the impact of future climate change on water resources was estimated in terms of separating the contribution from climate natural variability. Based on the analysis of baseline period, for the future period from 2021 to 2051, the impact of climate natural variability may play a major part, whereas for the period from 2061 to 2091, climate change attributed to greenhouse gases may dominate the changing process. The results show that changes from climate variability possess a comparable magnitude, which highlights the importance to separate impacts of climate variability in assessing climate change, instead of attributing all changes to climate change solely. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Changes in climate may significantly affect how sediment moves through watersheds into harbours and channels that are dredged for navigation or flood control. Here, we applied a hydrologic model driven by a large suite of climate change scenarios to simulate both historical and future sediment yield and transport in two large, adjacent watersheds in the Great Lakes region. Using historical dredging expenditure data from the U.S. Army Corps of Engineers, we then developed a pair of statistical models that link sediment discharge from each river to dredging costs at the watershed outlet. Although both watersheds show similar slight decreases in streamflow and sediment yield in the near‐term, by Mid‐Century, they diverge substantially. Dredging costs are projected to change in opposite directions for the two watersheds; we estimate that future dredging costs will decline in the St. Joseph River by 8–16% by Mid‐Century but increase by 1–6% in the Maumee River. Our results show that the impacts of climate change on sediment yield and dredging may vary significantly by watershed even within a region and that agricultural practices will play a large role in determining future streamflow and sediment loads. We also show that there are large variations in responses across climate projections that cause significant uncertainty in sediment and dredging projections.  相似文献   

19.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A soil moisture retrieval method is proposed, in the absence of ground-based auxiliary measurements, by deriving the soil moisture content relationship from the satellite vegetation index-based evapotranspiration fraction and soil moisture physical properties of a soil type. A temperature–vegetation dryness index threshold value is also proposed to identify water bodies and underlying saturated areas. Verification of the retrieved growing season soil moisture was performed by comparative analysis of soil moisture obtained by observed conventional in situ point measurements at the 239-km2 Reynolds Creek Experimental Watershed, Idaho, USA (2006–2009), and at the US Climate Reference Network (USCRN) soil moisture measurement sites in Sundance, Wyoming (2012–2015), and Lewistown, Montana (2014–2015). The proposed method best represented the effective root zone soil moisture condition, at a depth between 50 and 100 cm, with an overall average R2 value of 0.72 and average root mean square error (RMSE) of 0.042.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号