首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspended sediments from the Indus River collected during 1981 through 1983 were analyzed for POC and its constituent fractions including amino acids, amino sugars and sugars. Percentage of POC decreased with increasing suspended matter concentrations, which suggested dilution of organic matter by mineral matter.The concentrations of amino acids, amino sugars and sugars varied, respectively, between 180 and 2000 μg/l, 5 and 125 μg/l, and 60 and 1100 μg/l. Their contributions to POC varied between 2 and 60% for amino acids and amino sugars, and between 2 and 15% for sugars. They were high during low sediment discharge (February to June), and low during high sediment discharge (August and September). Suspended sediments associated with high sediment discharge periods were characterized by low ratios of:
  • 1.(i) aspartic acid:β-alanine
  • 2.(ii) glutamic acid:γ-aminobutyric acid
  • 3.(iii) amino acids:amino sugars
  • 4.(iv) hexoses:pentoses. These and the relative distribution pattern of the monosaccharides such as galactose, arabinose, mannose and xylose indicated that, not only dilution, but also differences in the sources and processes affect the POC transport in the Indus River. These result in transport of biodegraded organic matter during high sediment discharge periods: this appears to be common to other major rivers of the region, with depositional centers in deep sea areas. These rivers, with their high sediment loads, could contribute up to 8 to 11% of the global annual organic carbon burial in marine sediments.
  相似文献   

2.
Annual flood peak discharges is widely used in risk assessment. Major sources of flooding in Pakistan are River Jhelum, River Chenab, River Kabul, and upper and lower parts of River Indus. These rivers are major tributaries of the River Indus System which is one of the most important systems of the world and the greatest system of Pakistan. River Indus is the longest river of Pakistan containing seven gauge stations and several barrages, and it plays a vital role in the irrigation system and power generation for the country. This paper estimates the risk of flood in River Indus using historical data of maximum peak discharges. On the basis of our analysis, we find out which dam/barrage reservoir need to be updated in capacity, and whether there are more dams/barrages needed.  相似文献   

3.
The impacts of floods and droughts are intensified by climate change, lack of preparedness, and coordination. The average rainfall in study area is ranging from 200 to 400 mm per year. Rain gauge generally provides very accurate measurement of point rain rates and the amounts of rainfall but due to scarcity of the gauge locations provides very general information of the area on regional scale. Recognizing these practical limitations, it is essential to use remote sensing techniques for measuring the quantity of rainfall in the Middle Indus. In this research, Tropical Rainfall Measuring Mission (TRMM) estimation can be used as a proxy for the magnitude of rainfall estimates from classical methods (rain gauge), quantity, and its spatial distribution for Middle Indus river basin. In order to use TRMM satellite data for discharge measurement, its accuracy is determined by statistically comparing it with in situ gauged data on daily and monthly bases. The daily R 2 value (0.42) is significantly lower than monthly R 2 value (0.82), probably due to the time of summation of TRMM 3-hourly precipitation data into daily estimates. Daily TRMM data from 2003 to 2012 was used as input forcing in Soil and Water Assessment Tool (SWAT) hydrological model along with other input parameters. The calibration and validation results of SWAT model give R 2 = 0.72 and 0.73 and Nash-Sutcliffe coefficient of efficiency = 0.69 and 0.65, respectively. Daily and monthly comparison graphs are generated on the basis of model discharge output and observed data.  相似文献   

4.
西秦岭嘉陵江上游瞬时地貌发育特征   总被引:1,自引:0,他引:1       下载免费PDF全文
西秦岭位于青藏高原东北缘,是青藏高原晚新生代构造扩展的前缘部位。西秦岭地区发育的一系列河流水系作为高原物质向外扩展的载体,记录了高原扩展过程中的地貌演化信息。本文选取西秦岭嘉陵江上游的支流作为研究对象,以河流纵剖面的形态和陡峭指数的空间分布为基础数据,初步分析了嘉陵江上游的地貌特征及其影响因素。结果表明,嘉陵江上游地貌演化处于瞬时状态,裂点以上的低陡峭指数区域代表了残余地貌,裂点以下高陡峭指数区域是裂点响应基准面下降后形成的新地貌。通过对比区域岩性和降水条件发现,岩性和降水对河流裂点发育以及陡峭指数的影响是有限的,河流裂点的发育和陡峭指数的变化主要受控于区域构造抬升引起的基准面下降。陡峭指数的空间分布特征表明构造作用对地貌发育起了重要的塑造作用。西秦岭瞬时地貌的发育是对印度板块与欧亚板块碰撞汇聚以来的远程效应的响应。  相似文献   

5.
We document upper slope sedimentary process and strata on the passive margin of the north-western South China Sea (SCS) using multibeam bathymetry and high-resolution seismic data. The upper slope can be divided into two segments based on geomorphology, strata, and sediment supply. (1) The east segment is characterised by deep incised canyons and gullies, and slope failure. Submarine canyons with both U- and V-shaped morphology (13–28 km long × 2–4 km wide) are oriented NNE–SSW or NNW–SSE and are approximately perpendicular to the slope. Erosion is dominant, with escarpments, slumps, and several mass transport deposits (MTDs). Shelf-margin clinoforms show strongly upward vertical aggradation with time and are strongly aggradational in style. Since 5.5 Ma, the shelf break line migrated southwards and then retreated to its present position. The segment is classified as erosion-dominated due to insufficient sediment supply. (2) The west segment has a smooth surface, gentle gradient, and a strongly progradational style, with MTDs triggered by high sedimentation rates. Shelf-margin clinoforms display a combination of progradational and aggradational stacking patterns. The shelf break line migrated southwards with time. The segment is classified as deposition-dominated, resulting from plentiful sediment supply. Depositional models have been constructed for each segment: a constant shelf break model with insufficient sediment supply in the east, and a migration shelf break model with plenty sediment supply in the west. This case study contributes to the understanding of the upper slope sedimentary process and stratigraphic style under different sediment supply conditions.  相似文献   

6.
Ajaz Karim  Jan Veizer   《Chemical Geology》2000,170(1-4):153-177
This study deals with the major ions and isotope systematics for C, O, S, and Sr in the Indus River Basin (IRB). Major ion chemistry of the Indus, and most of its headwater tributaries, follow the order Ca2+>Mg2+>(Na++K+) and HCO3>(SO42−+Cl)>Si. In the lowland tributaries and in some of the Punjab rivers, however, (Na++K+) and (SO42−+Cl) predominate. Cyclic salts, important locally for Na+ in dilute headwater tributaries, constitute about 5% of the annual solutes transported by the Indus. Weathering of two lithologies, sedimentary carbonates and crystalline rocks, controls the dissolved inorganic carbon (DIC) concentrations and its carbon isotope systematics throughout the Indus, but turbulent flow and lower temperatures in the headwaters, and storage in reservoirs in the middle and lower Indus promote some equlibration with atmospheric carbon dioxide. Combined evidence from sulfur and oxygen isotopic composition of sulfates refutes the proposition that dissolution of these minerals plays a significant role in the IRB hydrochemistry and suggests that any dissolved sulfates were derived by oxidation of sulfide minerals.

In the upper Indus, silicate weathering contributes as much as 75% (or even higher in some tributaries) of the total Na+ and K+, declining to less than 40% as the Indus exits the orogen. In contrast, about two-thirds of Ca2+ and Mg2+ in the upper Indus (over 70% in some tributaries) and three-fourth in the lower Indus, are derived from sedimentary carbonates. The 87Sr/86Sr ratios tend to rise with increasing proportions of silicate derived cations in the headwater tributaries and in the upper and middle Indus, but are out of phase or reversed in the lower Indus. Finally, close to the river mouth, the discharge weighted average contribution of silicate derived Ca2++Mg2+ and silicate derived Na++K+ are, respectively, about one-fourth and two-thirds of their total concentrations.  相似文献   


7.
Groundwater development has contributed significantly to food security and reduction in poverty in Pakistan. Due to rapid population growth there has been a dramatic increase in the intensity of groundwater exploitation leading to declining water tables and deteriorating groundwater quality. In such prevailing conditions, the hydrogeological appraisal of escalating groundwater exploitation has become of paramount importance. Keeping this in view, a surface water–groundwater quantity and quality model was developed to assess future groundwater trends in the Rechna Doab (RD), a sub-catchment of the Indus River Basin. Scenario analysis shows that if dry conditions persist, there will be an overall decline in groundwater levels of around 10 m for the whole of RD during the next 25 years. The lower parts of RD with limited surface water supplies will undergo the highest decline in groundwater levels (10 to 20 m), which will make groundwater pumping very expensive for farmers. There is a high risk of groundwater salinization due to vertical upconing and lateral movement of highly saline groundwater into the fresh shallow aquifers in the upper parts of RD. If groundwater pumping is allowed to increase at the current rate, there will be an overall decline in groundwater salinity for the lower and middle parts of RD because of enhanced river leakage.  相似文献   

8.
Mahmood  Shakeel  Rani  Razia 《Natural Hazards》2022,111(3):3053-3069
Natural Hazards - This study is an effort of people-centric geo-spatial exposure and damage assessment of 2014-flood in Upper Indus Plain (UIP). Community-based disaster risk management (CBDRM)...  相似文献   

9.
南秦岭柞水银洞子—山阳桐木沟铅银锌矿带地处陕西柞山地区中部,位于中秦岭晚古生代弧前盆地的柞水—山阳矿集区内。该带东西长约71 km,南北宽1~7 km。对带内银洞子(铜)铅银菱铁矿床、黑沟铅锌菱铁矿床、桐木沟锌矿床、南沟(银)铅矿床和松林沟铅矿点的地质、矿体、蚀变、矿化规律进行总结,发现矿体均严格产于中-上泥盆统青石垭组,具有明显的时控、层控、岩控及后期热液改造成矿特征,属典型的海底热水喷流沉积-热液改造层控矿床,构成与晚古生代海底热水喷流沉积-热液改造作用有关的铅锌银成矿系列。建立以层控+热液改造为主控矿条件,以青石垭组热水沉积岩+断裂+化探异常+硫化物、重晶石、菱铁矿蚀变分带为组合的找矿模型,对柞山地区金属矿的找矿突破具有重要的指导意义。  相似文献   

10.
This study is an attempt to contribute to the data set of granulometric studies of sediments by measuring the sedimentary structure and texture, along with statistical parameters, of cold and arid lake systems. The palaeolake sequence along the River Indus on the western fringe of the Tibetan Plateau in Ladakh sector was selected in order to shed light on depositional environmental changes within the lake from post‐last glacial maximum to 5 ka. The River Indus was blocked by Lamayuru dam burst during the deglaciation, after the Last Glacial Maximum (LGM) and the subsequent increase in water level led to the formation of the Saspol–Khalsi palaeolake. This lake was ca 55 km in length, extending from Nimo to Khalsi, had a surface area of 370 km2 and was in existence until 5 ka. Two sections (Saspol and Khalsi) separated by an aerial distance of 35 km show a similar trend in sediment character due to their deposition in the same lake system. Grain‐size studies show a polymodal nature of sediments for both of the sections. However, sediments of the lower/downstream section (Khalsi) show a poorer degree of sorting, and coarser grain size and high energy depositional condition as compared with the sediments of Saspol section (positioned upstream) due to the location of the sections within the lake system. It was noted that, in high‐altitude arid regions, the sedimentological characteristics of large‐sized valley lakes may vary greatly, horizontally as well as vertically, owing to local stream input, inflow intensity from the catchment, outflow velocity of water channels, lithology and valley widths at the different sites.  相似文献   

11.
Thermoluminescence (TL) dates are presented for the Upper Pleistocene loess sequence that overlies a Paleolithic site 14.5 km southeast of Rawalpindi, northern Pakistan (lat. 33° 30′ 30″ long. 73° 10′ 40″). These dates provide the first dating of Pleistocene blade assemblages in Pakistan, and also indicate that the loess is associated with the last, and not just the penultimate, glaciation of the Himalayas as had been previously thought. The site includes the remains of a structure and numerous blade tools, and may have been used for skin-working or some comparable activity. The ten TL dates presented span the age range 64–24 ka, and imply an early date for blade industries in the northern part of the Indian sub-continent of ca. 45–42 ka.  相似文献   

12.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

13.
Mahmood  Shakeel  Hamayon  Kiran 《Natural Hazards》2021,106(3):2825-2844
Natural Hazards - Pakistan is exposed to hydro-meteorological and geological hazards. Flood is one of the hydro-meteorological hazards, and so far 25 major floods have occurred in Indus River...  相似文献   

14.
刘譞  林舟  丁超 《高校地质学报》2020,26(3):339-349
均衡状态时的基岩河道纵剖面表现为平滑形态,然而自然界的河道纵剖面常因地球各种内外动力作用的影响而呈现出以裂点为特征的不均衡状态,因此不均衡的河道剖面及裂点的特征可以用于指示外界环境的扰动。位于青藏高原东缘造山带的岷江上游流域水系普遍呈现不均衡的特征,且广泛发育有裂点。文章基于数字高程模型,提取裂点空间分布特征,通过裂点成因分析后发现,这些裂点的形成受到岩性、冰川作用、构造等因素的影响:因岩性形成的裂点主要位于花岗岩与其他地层的交界线上;而高海拔裂点主要受到冰川作用的控制,位于地形起伏度较低的区域;流域内低海拔区域成层分布的坡断型裂点可能主要因多期次区域构造隆升而形成;岷江上游下段流域的阶梯状垂阶型裂点则主要因地震滑坡形成。这一结果增进了对岷江流域的河流地貌发育及其影响因素的理解。此外,研究结果也说明在对河道纵剖面分析时有必要更多考虑到滑坡及冰川等因素对现代河道纵剖面产生的重要影响,为进一步理解造山带地貌演化及控制因素提供了参考视角。  相似文献   

15.
The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya   总被引:5,自引:0,他引:5  
ABSTRACT Blueschists occur along the Indus Suture Zone in Ladakh as tectonic thrust slices, as isolated blocks within mélange units and as pebbles within continental detrital series. In the Shergol-Baltikar section high-pressure rocks within the Mélange unit lie between the Dras-Naktul-Nindam nappes in the north and the Lamayuru units in the south. The blueschists are imbricated with mélange formation of probably upper Cretaceous age. They are overlain discordantly by the Shergol conglomerate of post Eocene (Oligo-Miocene ?) age. Blueschist lithologies are dominated by volcanoclastic rock sequences of basic material with subordinate interbedding of cherts and minor carbonates. Mineral assemblages in metabasic rocks are characterized by lawsonite-glaucophane/crossite-Na-pyroxene-chlorite-phengite-titanite ± albite ± stilpnomelane. In the quartz bearing assemblages garnet is present but omphacite absent. P-T estimates indicate temperatures of 350 to 420°c and pressures around 9–11 kbar. Geochemical investigations show the primary alkaline character of the blueschist, which suggests an oceanic island or a transitional MORB type primary geotectonic setting. K/Ar isotopic investigations yield middle Cretaceous ages for both whole rocks and minerals. Subduction related HP-metamorphism affecting the Mesozoic Tethyan oceanic crust developed contemporaneously with magmatism in the Dras volcanic are and the Ladakh batholith. Subsequent collision of India with Asia obducted relics of subduction zone material which later became involved in nappe emplacement during the Himalayan mountain building.  相似文献   

16.
In fluvial systems, the relationship between a dominant variable (e.g. flood pulse) and its dependent ones (e.g. riparian vegetation) is called connectivity. This paper analyzes the connectivity elements and processes controlling riparian vegetation for a reach of the upper Paraná River (Brazil) and estimates the future changes in channel-vegetation relationship as a consequence of the managing of a large dam. The studied reach is situated 30 km downstream from the Porto Primavera Dam (construction finished in 1999). Through aerial photography (1:25,000, 1996), RGB-CBERS satellite imagery and a previous field botany survey it was possible to elaborate a map with the five major morpho-vegetation units: 1) Tree-dominated natural levee, 2) Shrubby upper floodplain, 3) Shrub-herbaceous mid floodplain, 4) Grass-herbaceous lower floodplain and 5) Shrub-herbaceous flood runoff channel units. By use of a detailed topographic survey and statistical tools each morpho-vegetation type was analyzed according to its connectivity parameters (frequency, recurrence, permanence, seasonality, potamophase, limnophase and FCQ index) in the pre- and post-dam closure periods of the historical series. Data showed that most of the morpho-vegetation units were predicted to present changes in connectivity parameters values after dam closing and the new regime could affect, in different intensity, the river ecology and particularly the riparian vegetation. The methods used in this study can be useful for dam impact studies in other South American tropical rivers.  相似文献   

17.
 The historic processing of precious metal ores mined from the Comstock Lode of west-central Nevada resulted in the release of substantial, but unquantified amounts of mercury-contaminated mill tailings to the Carson River basin. Geomorphic and stratigraphic studies indicate that the introduction of these waste materials led to a period of valley-floor aggradation that was accompanied by lateral channel instability. The combined result of these geomorphic responses was the storage of large volumes of mercury-enriched sediment within a complexly structured alluvial sequence located along the Carson River valley. Much of the contaminated sediment is associated with filled paleochannels produced by the cutoff and abandonment of meander loops, and their subsequent infilling with contaminated particles. Geochemically, these deposits are characterized by variations in mercury levels that exceed three orders of magnitude. Continued lateral instability, coupled with an episode of channel-bed incision, followed the decline of Comstock mining, and has reexposed contaminated debris within the banks of the river. Erosion of bank sediments reintroduces mercury-enriched particles to the modern channel bed. It is suggested on the basis of geochemical and sedimentological data that during the bank erosion process, much of the mercury associated with fine (<63 μ) valley-fill deposits are carried downstream without being incorporated to any appreciable extent within the channel-bed sediments. In contrast, mercury associated with larger and denser particles, particularly mercury-gold-silver amalgam grains, are accumulated in the channel-bed sediments as the river traverses polluted reaches of the Carson River valley. Concentration patterns developed along the modern channel indicate that the valley fill is the primary source of mercury to the river today. Thus, these data imply that efforts to reduce the influx of mercury to the aquatic environment should examine methods for reducing bank erosion rates. Received: 13 December 1996 · Accepted: 15 April 1997  相似文献   

18.
19.
《China Geology》2020,3(4):633-642
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now. In this study, the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin, Pakistan. Based on the comprehensive analysis of the results and previous data, it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin. The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks, while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks. Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge. Furthermore, the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities. Therefore, it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.  相似文献   

20.
The Lockhart Formation from a major carbonate unit of the Paleocene Charrat Group in Upper Indus Basin, Pakistan represents a larger foraminiferal–algal build up deposited in a cyclic sequence of the carbonate ramp. The foraminiferal–algal assemblages of the Lockhart Formation are correlated here to larger foraminiferal biostratigraphic zone, i.e. Shallow Benthic Zone (SBZ3) of the Thanetian Age. Inner ramp lagoon, shoal and fore shoal open marine are three main facies associations represented by wackstone and packstone foraminiferal–algal deposits. These facies are present in a cyclic order and displayed a retrograding carbonate ramp indicating the Thanetian transgressive deposits associated with eustatic sea level rise. The correlation of the microfacies of the Lockhart Formation (Upper Indus Basin) and facies of the Dungan Formation (Lower Indus Basin) provide detailed configuration of the depositional setting of the Indus Basin during the time interval represented by the Thanetian Zone SBZ3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号