首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (? = 0.008–0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150–1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.  相似文献   

2.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   

3.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

4.
Shock veins up to 1.1 mm thick were found within non-porous lithic clasts from suevite breccia of the Nördlinger Ries impact structure. These veins were studied by optical microscopy in transmitted and reflected light and by scanning electron microscopy. In shocked amphibolites, two types of Ca-rich majorite occur within and adjacent to the veins. The first type crystallized from shock-induced melts within the veins. Si contents of these majorites suggest dynamic pressure of ~15–17 GPa, implying minimum temperatures in the range of ~2,150–2,230°C. The second type of majorite was formed adjacent to the shock veins within pargasitic hornblende. This majorite contains significant amounts of H2O (0.7–0.9 wt%). Based on the textural setting, the shrinkage cracks and the chemical compositions of both phases, a solid-state mechanism is deduced for the hornblende to majorite phase transition. Both genetic types of Ca-rich majorite are described for the first time from a terrestrial impact crater. Along with stishovite, majorite constitutes the second silicate mineral displaying sixfold coordination of Si at Ries. Using micro-Raman spectroscopy, jadeite + coesite and jadeite + grossular were identified within local melt glasses of alkali feldspar and plagioclase composition, respectively. Stishovite aggregates, produced by solid-state reaction, along with shock-induced high-pressure melt glasses of almandine composition were also detected in shock veins of a garnet-cordierite-sillimanite restite. The quenched, homogeneous almandine glasses point to melting temperatures of more than ~2,500°C for the veins. Our findings demonstrate that terrestrial shock veins can give valuable information on shock-induced mineral transformations and transient high pressures of host rocks during a natural impact event.  相似文献   

5.
The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na_2O + K_2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(~(87)Sr/~(86)Sr)_t = 0.70762-0.70809,low ε_(Nd)(t) =-12.76 to-12.15 values and negative values of ε_(Hf)(t) =-23.49 to-17.02 with small variations in(~(176)Hf/~(177)Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.  相似文献   

6.
Dacites dominate the large-volume, explosive eruptions in magmatic arcs, and compositionally similar granodiorites and tonalites constitute the bulk of convergent margin batholiths. Shallow, pre-eruptive storage conditions are well known for many dacitic arc magmas through melt inclusions, Fe–Ti oxides, and experiments, but their potential origins deeper in the crust are not well determined. Accordingly, we report experimental results identifying the P–T–H2O conditions under which hydrous dacitic liquid may segregate from hornblende (hbl)-gabbroic sources either during crystallization–differentiation or partial melting. Two compositions were investigated: (1) MSH–Yn?1 dacite (SiO2: 65 wt%) from Mount St. Helens’ voluminous Yn tephra and (2) MSH–Yn?1?+?10% cpx to force saturation with cpx and map a portion of the cpx?+?melt?=?hbl peritectic reaction boundary. H2O-undersaturated (3, 6, and 9 wt% H2O) piston cylinder experiments were conducted at pressures, temperatures, and fO2 appropriate for the middle to lower arc crust (400, 700, and 900 MPa, 825–1100?°C, and the Re–ReO2 buffer?≈?Ni–NiO?+?2). Results for MSH–Yn?1 indicate near-liquidus equilibrium with a cpx-free hbl-gabbro residue (hbl, plg, magnetite, ± opx, and ilmeno-hematite) with 6–7 wt% dissolved H2O, 925?°C, and 700–900 MPa. Opx disappears down-temperature consistent with the reaction opx?+?melt?=?hbl. Cpx-added phase relations are similar in that once ~10% cpx crystallizes, multiple saturation is attained with cpx, hbl, and plg, +/? opx, at 6–7 wt% dissolved H2O, 940?°C, and 700–900 MPa. Plg–hbl–cpx saturated liquids diverge from plg–hbl–opx saturated liquids, consistent with the MSH–Yn?1 dacite marking a liquid composition along a peritectic distributary reaction boundary where hbl appears down-temperature as opx?+?cpx are consumed. The abundance of saturating phases along this distributary peritectic (liquid?+?hbl?+?opx?+?cpx?+?plg?+?oxides) reduces the variance, so liquids are restricted to dacite–granodiorite–tonalite compositions. Higher-K dacites than the Yn would also saturate with biotite, further limiting their compositional diversity. Theoretical evaluation of the energetics of peritectic melting of pargasitic amphiboles indicates that melting and crystallization of amphibole occur abruptly, proximal to amphibole’s high-temperature stability limit, which causes the system to dwell thermally under the conditions that produce dacitic compositions. This process may account for the compositional homogeneity of dacites, granodiorites, and tonalites in arc settings, but their relative mobility compared to rhyolitic/granitic liquids likely accounts for their greater abundance.  相似文献   

7.
《International Geology Review》2012,54(17):2184-2210
ABSTRACT

The Purang ultramafic massif, located in the Yarlung-Zangbo Suture Zone (YZSZ) of the Tibetan Plateau, consists mainly of harzburgites and minor lherzolites. The spinel-bearing lherzolites of the NW part of the massif display a granular texture, consisting of large olivine and pyroxene crystals with curvilinear grain boundaries. These lherzolites contain chromian spinel (Cr-spinel) of low Cr# [100 × Cr/(Cr +Al) = 24.7–30.2], enstatite with high Mg# [100 × Mg/(Mg + Fe2+) = 90.0–91.2] and relatively high Al2O3 content (3.3–4.1 wt%), and diopside with high Mg# (90.2–93.3) and Al2O3 content (4.6–5.0 wt%). These compositions are analogous to those of spinel and pyroxenes from residual peridotites. However, the Purang lherzolites show U-shaped primitive mantle (PM)-normalized rare earth element (REE)-profiles, which are not consistent with a potential origin as melting residues. The high LREE contents and positive Ti anomalies shown by the investigated lherzolites coupled with the low TiO2 content of their mineral constituents imply that these rocks possibly stored LREE- and Ti-bearing arc-related melts/fluids in their groundmass.

A mineral assemblage composed of diamond, super-reduced [(SuR) moissanite, native Cr] and crustal-derived minerals (zircon, corundum, rutile), has been separated from the Purang lherzolites. Uranium-Pb geochronological dating of zircons yielded an age range between 1718 and 465 Ma, indicating that they represent ancient crustal material delivered into the upper mantle via previous subduction events. Diamonds and old zircons (± crustal minerals) were carried to shallow mantle levels by asthenospheric magmas produced during a slab rollback-induced decompression melting process. The recovery of SuR minerals is consistent with fluid percolation and crystallization of alteration-related minerals in the lithospheric parts of a (hydrated) mantle wedge, resulting in the formation of highly reduced micro-environments.  相似文献   

8.
ABSTRACT

We investigated lherzolitic peridotites in the Cretaceous Purang ophiolite along the Yarlung Zhangbo suture zone (YZSZ) in SW Tibet to constrain their mantle–melt evolution history. Coarse-grained Purang lherzolites contain orthopyroxene (Opx) and olivine (Ol) porphyroclasts with embayments filled by small olivine (Ol) neoblasts. Both clinopyroxene (Cpx) and Opx display exsolution textures represented by lamellae structures. Opx exsolution (Opx1) in clinopyroxene (Cpx1) is made of enstatite, whose compositions (Al2O3 = 3.85–4.90 wt%, CaO = <3.77 wt%, Cr2O3 = 0.85–3.82 wt%) are characteristic of abyssal peridotites. Host clinopyroxenes (Cpx1) have higher Mg#s and Na2O, with lower TiO2 and Al2O3 contents than Cpx2 exsolution lamellae in Opx, and show variable LREE patterns. Pyroxene compositions of the lherzolites indicate 10–15% partial melting of a fertile mantle protolith. P–T estimates (1.3–2.3 GPa, 745–1067°C) and the trace element chemistry of pyroxenes with exsolution textures suggest crystallization depths of ~75 km in the upper mantle, where the original pyroxenes became decomposed, forming exsolved structures. Further upwelling of lherzolites into shallow depths in the mantle resulted in crystal–plastic deformation of the exsolved pyroxenes. Combined with the occurrence of microdiamond and ultrahigh-pressure (UHP) mineral inclusions in chromites of the Purang peridotites, the pyroxene exsolution textures reported here confirm a multi-stage partial melting history of the Purang lherzolites and at least three discrete stages of P-T conditions in the course of their upwelling through the mantle during their intra-oceanic evolution.  相似文献   

9.
Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790–825 °C and progressing through the glass transition temperature range (T g ~ 750–620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low to high crystal nucleation. Based on the diffusion of H2O across these temperature ranges (~800–300 °C), timescales of spherulite crystallization occur on a timescale of ~4 days with further modification up to ~400 years (growth is prohibitively slow <400 °C and would become diffusion reliant). Selective deformation of spherulites supports a down-temperature continuum of spherulite formation in the Rocche Rosse obsidian; indeed, petrographic evidence suggests that high-strain zones may have catalyzed progressive nucleation and growth of further generations of spherulites during syn- and post-emplacement cooling.  相似文献   

10.
The aim of this research was to evaluate the feasibility of using the vitrification process as an alternative solution to the disposal of a coal fly ash and metallurgical slags in landfills. The starting wastes were characterised in terms of chemical, granulometric, mineralogical, and microstructural analysis. A selected batch composition composed by 58.5% fly ash, 31.5% metallurgical slag and 10.0 Na2O% (wt%) was melted at 1450 °C and poured to obtain monolithic glass samples. The environmental behaviour of the starting wastes and the resulting glass was evaluated by standard leaching tests, which shows that vitrification leads to a stabilisation process in which the inorganic components of the wastes are immobilised throughout their incorporation into the glass structure. Moreover, vitrification transforms those hazardous wastes into a new non-hazardous glass. A preliminary study shows that the new glass is suitable for developing glass–ceramic tiles appropriate for floor pavement and wall covering.  相似文献   

11.
The pressure–temperature (PT) conditions for producing adakite/tonalite–trondhjemite–granodiorite (TTG) magmas from lower crust compositions are still open to debate. We have carried out partial melting experiments of mafic lower crust in the piston-cylinder apparatus at 10–15 kbar and 800–1,050 °C to investigate the major and trace elements of melts and residual minerals and further constrain the PT range appropriate for adakite/TTG formation. The experimental residues include the following: amphibolite (plagioclase + amphibole ± garnet) at 10–15 kbar and 800 °C, garnet granulite (plagioclase + amphibole + garnet + clinopyroxene + orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene granulite (plagioclase + clinopyroxene + orthopyroxene ± amphibole) at 10 kbar and 900 °C and 10–12.5 kbar and 1,000 °C, garnet pyroxenite (garnet + clinopyroxene ± amphibole) at 13.5–15 kbar and 900–1,000 °C, and pyroxenite (clinopyroxene + orthopyroxene) at 15 kbar and 1,050 °C. The partial melts change from granodiorite to tonalite with increasing melt proportions. Sr enrichment occurs in partial melts in equilibrium with <20 wt% plagioclase, whereas depletions of Ti, Sr, and heavy rare earth elements (HREE) occur relative to the starting material when the amounts of residual amphibole, plagioclase, and garnet are >20 wt%, respectively. Major elements and trace element patterns of partial melts produced by 10–40 wt% melting of lower crust composition at 10–12.5 kbar and 800–900 °C and 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO2 contents of the 1,000–1,050 °C melts are higher than that of pristine adakite/TTG. In comparison with natural adakite/TTG, partial melts produced at 10–12.5 kbar and 1,000 °C and 15 kbar and 1,050 °C have elevated HREE, whereas partial melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with >20 wt% garnet have depressed Yb and elevated La/Yb and Gd/Yb. It is suggested that the most appropriate PT conditions for producing adakite/TTG from mafic lower crust are 800–950 °C and 10–12.5 kbar (corresponding to a depth of 30–40 km), whereas a depth of >45–50 km is unfavorable. Consequently, an overthickened crust and eclogite residue are not necessarily required for producing adakite/TTG from lower crust. The lower crust delamination model, which has been embraced for intra-continental adakite/TTG formation, should be reappraised.  相似文献   

12.
A natural sample of clinochlore from the Longitudinal Valley area of northeastern Taiwan has been characterized by using the powder X-ray diffraction (XRD), differential thermal analysis and electron paramagnetic resonance (EPR) spectroscopic techniques. The lattice parameters of the monoclinic (IIb) clinochlore with the composition (Mg2.988 Al1.196 Fe1.6845 Mn0.026)5.8945 (Si2.559 Al1.441)4 O10 (OH)8 have been calculated from the powder XRD data and are found to be a = 5.347 Å, b = 9.223 Å, c = 14.250 Å, β = 97.2° and Z = 2. The thermal behaviour of the sample showed the typical behaviour of clinochlore with a hydroxyl content of 12.5 wt%. The EPR spectrum at room temperature exhibits two resonance signals centred at g ≈ 2.0 and g ≈ 8.0. The signal at g ≈ 2.0 shows a six-line hyperfine structure which is a characteristic of Mn2+ ions in octahedral symmetry. The resonance signal at g ≈ 8.0 is a characteristic of Fe3+ ions. The EPR spectra have also been recorded at different temperatures (123–295 K). The population of spin levels (N) has been calculated for g ≈ 2.0 and g ≈ 8.0 resonance signals. It is observed that N increases with decreasing temperature. From EPR spectra, the spin-Hamiltonian parameters have been evaluated. The zero-field splitting parameter (D) is found to be temperature dependent. The peak-to-peak width of the g ≈ 8.0 resonance signal is found to increase with decrease in temperature.  相似文献   

13.
In the Pan-African Lufilian belt (Western Zambian Copperbelt), uranium mineralizations, preferentially scattered in kyanite ± talc micaschists (metamorphosed evaporitic sediments) or concentrated along transposed quartz veins provide an opportunity to (1) understand the time/space relationship between the ore minerals and the deformation of the host rocks, (2) identify the different fluid events associated with specific stages of quartz deformation and (3) characterize the ore fluid geochemistry in terms of fluid origin and fluid/rock interactions. In the U occurrences studied in Lolwa and Mitukuluku (Domes region, Western Zambian Copperbelt), two mineralizing stages are described. The first generation of ore fluids (53–59 wt% CaCl2, 13–15 wt% NaCl; N2–H2 in the gas phase of fluid inclusions) circulated during the high-temperature quartz recrystallization, at 500–700 °C. This temperature is in agreement with the PT conditions recorded during the crustal thickening related to continental collision at ca. 530 Ma. LA-ICPMS analyses show the presence of uranium within this fluid, with a concentration mode around 20 ppm. The second generation of ore fluid (21–32 wt% NaCl, 19–21 wt% CaCl2; CO2–CO in the gas phase of fluid inclusions) percolated at lower temperature conditions, at the brittle–ductile transition, between 200 and 300 °C. This temperature could be related to the exhumation of the high-grade metamorphic rocks at ca. 500 Ma. The formation of H2 and CO is interpreted as the result of radiolysis in the presence of dissolved uranium in the aqueous phase of these fluid inclusions. Finally, a late fluid (14–16 wt% NaClequiv) circulated in the brittle domain but seems unrelated to U (re-)mobilization event.  相似文献   

14.
The ~1.74 Ga Damiao anorthosite complex, North China, is composed of anorthosite and leuconorite with subordinate melanorite, mangerite, oxide-apatite gabbronorite, perthite noritic (i.e., jotunitic) and ferrodioritic dykes. The complex hosts abundant vein-, pod- and lens-like Fe–Ti–P ores containing variable amounts of apatite (10–60 modal%) and Fe–Ti oxides. In addition to Fe–Ti–P ores, there are also abundant Fe–Ti ores which are closely associated with Fe–Ti–P ores in the deposit. Most of Fe–Ti–P ores are dominated by Fe–Ti oxides and apatite, devoid of silicate minerals, mineralogically similar to the common nelsonites elsewhere. In contrast, Fe–Ti ores are dominated by Fe–Ti oxides with minor apatite (<5 modal %). The parental magma of these ores, estimated from olivine and apatite compositions using mineral-melt partition coefficients, has composition similar to the ferrodioritic dykes. Fe–Ti–P ores have variable Fe–Ti oxides and apatite proportions, indicating that they are cumulates. Their simple assemblage of Fe–Ti oxides and apatite and local net-texture suggest that the Fe–Ti–P ores in Damiao have formed from nelsonitic melts immiscibly separated from the ferrodioritic magma during late-stage differentiation. Fe–Ti ores are also cumulates and have mineral compositions similar to Fe–Ti–P ores. The close association between Fe–Ti and Fe–Ti–P ores indicates that the Fe–Ti ores may have also formed from the nelsonitic melts. We proposed that differentiation of nelsonitic melts accompanied by gravity settling is responsible for the formation of Fe–Ti and Fe–Ti–P ores. Such a differentiation process in nelsonitic melts is well supported by variations of Sr, Y, Th, U, REE and Eu/Eu* of apatite in Fe–Ti–P ores. Using oxides/apatite ratio of 2:1 and compositions of apatite and calculated primary oxides, we estimate the composition of the nelsonitic melt as ~52.0 wt% Fe2O3t, ~18.5 wt% CaO, ~14.2 wt% P2O5, ~8.7 wt% TiO2, ~4.0 wt% Al2O3 and ~1.1 wt% MgO with minor SiO2, K2O, Na2O and F. Such a nelsonitic melt is suggested to be possibly conjugated with Si-rich melts compositionally similar to the Damiao jotunitic dykes (~50 wt% SiO2 and ~15 wt% Fe2O3t) which may subsequently evolve to mangeritic rocks in Damiao. Our modeling also indicates that the onset of immiscibility occurs at a time when the evolved melt has ~44 wt% SiO2, ~21 wt% Fe2O3t, ~3.0 wt% TiO2 and ~2.6 wt% P2O5. High oxygen fugacity and phosphorous content in magmas may play important roles in the immiscibility of nelsonitic magmas, including promoting iron enrichments and widening the two-liquid field.  相似文献   

15.
Ubiquitous post-Variscan dolomites occur in Zn–Pb–Cu veins at the Nízký Jeseník Mountains and the Upper Silesian Basin (Lower and Upper Carboniferous siliciclastics at the eastern part of the Bohemian Massif). Crush–leach, stable isotope (oxygen and carbon) and microthermometry analysis of the fluid inclusions in dolomites enable understanding the geochemistry, origin and possible migration pathways of the fluids. Homogenisation temperatures of fluid inclusions range between 66 and 148°C, with generally higher temperatures in the Nízký Jeseník Mountains area than in the Upper Silesian Basin. The highest homogenisation temperatures (up to 148°C) have been found near major regional faults and the lowest in a distant position or at higher stratigraphic levels. Highly saline (16.6–28.4 eq. wt% NaCl) H2O–NaCl–CaCl2 ± MgCl2 fluids occur in inclusions. Na–Cl–Br systematics of trapped fluids and a calculated oxygen isotopic fluid composition between ?0.9 and +3.0‰ V-SMOW indicate that the fluid was derived from evaporated seawater. Stable isotopic modelling has been used to explain stable isotopic trends. Isotopic values (δ13C = ?6.0/+2.0‰ V-PDB, δ18O = +15.5/+22.5‰ V-SMOW of dolomites) resulted from fractionation and crystallisation within an open system at temperatures between 80 and 160°C. Rock-buffering explains the isotopic composition at low w/r ratios. Organic matter maturation caused the presence of isotopically light carbon in the fluids and fluid–rock interactions largely controlled the fluid chemistry (K, Li, Br and Na contents, K/Cl, I/Cl and Li/Cl molar ratios). The fluid chemistry reflects well the interaction between the fluid and underlying limestones as well as with clay- and organic-rich siliciclastics. No regional trends in temperature or fluid geochemistry favour a fluid migration model characterised by an important vertical upward migration along major faults. A permeable basement and fractured sedimentary sequence enhanced the general nature of the fluid system. Fluid characteristics are comparable with the main post-Variscan fluid flow systems in the Polish (Cracow-Silesian ore district) and German sedimentary basins.  相似文献   

16.
Using waste as a resource to control phosphate pollution is a rising trend. This study describes the use of paper sludge (PS) and fly ash (FA), industrial solid wastes, to prepare materials with high phosphate uptake efficiency. The process consisted of pretreatment (mechanical milling), calcination, acidification (HCl), and post-treatment (aging, drying and grinding). The maximal phosphate uptake (>92 %) was achieved using PS together with FA either at PS/FA = 0.5 g/g or at PS/FA = 2.0 g/g, both calcined at 900 °C for 2 h and stirred with HCl (HCl/FA = 3 mL/g) for 1 h. With increasing calcination temperature and decreasing acid, the crystallinity of samples declined, and phosphate uptake (PU) increased. The PU process could be well described by the pseudo-second order kinetic model, while equilibrium state could be reasonably modeled by Langmuir isotherm. Neutral and weak alkaline pH promoted the PU efficiency, and 0.3 g sample/100 mL was the cost-effective dosage under the experimental conditions. The enhanced phosphate uptake of PS and FA provides alternative materials for phosphate removal from wastewater by the use of solid wastes in paper-making industries.  相似文献   

17.
Calc-alkaline and alkaline intrusions of the late Neoproterozic form essential part of the Arabian–Nubian Shield. They were formed during the collision between East- and West-Gondwana. Sharm El-Sheikh area, Sinai, includes wide compositional array of these intrusions that can be considered as a case study. Variations in both tectonic and thermobarometric condition for granitic intrusions are studied. Four mappable granitic types are recognized namely monzogranite, syenogranite, alkali feldspar granites, and riebeckite-bearing granites. The monzogranite and the syenogranite of the study area are mostly I-type, whereas the alkali feldspar granite and the riebeckite-bearing granite belong to A-type granitoid. The calc-alkaline intrusions were formed in compressional setting due to decompressional melting of mafic lower crust. Partial melting and anatexing of crustal rocks are suggested to explain the protolith of the alkaline intrusions. The transition from the calc-alkaline magma to the alkaline one occurred as a result of the tectonic transition from compression regime to tectonic relaxation (extension setting) during the last stage of the Pan-African Orogeny. The amphiboles of the studied granites are classified as calcic- and alkali-amphiboles. The calcic-amphiboles are ferro-edenite while the alkali-amphiboles are typically riebeckite. Both amphibole types are of magmatic nature. Coexisting amphiboles and plagioclases are used to estimate the physicochemical parameters of magma crystallization. The syenogranite underwent temperature and pressure of formation range of 520–730 °C, <3 kbar. The alkali feldspar granite records 450–830 °C, <4 kbar, while the riebeckite-bearing granite records the lowest temperature condition among all varieties and estimate formation at 350–650 °C, <4 kbar.  相似文献   

18.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

19.
The Dahongliutan granitic pluton consists of two-mica granites and is located in the eastern part of the Western Kunlun Orogen, northwestern Tibetan Plateau. Zircon separates from the pluton yield a SIMS U–Pb age of 217.5 ± 2.8 Ma. Rocks from the pluton contain relatively high and uniform SiO2 (72.32–73.48 wt%) and total alkalis (Na2O + K2O = 8.07–8.67 wt%) and are peraluminous and high-K calc-alkaline to shoshonitic in composition. The Dahongliutan granites are relatively depleted in the high-field-strength elements and the heavy rare earth elements (HREEs) and have relatively high Rb, and low Ba and Sr concentrations. They contain low total rare earth element (REE) concentrations. The light REEs are strongly enriched relative to the HREEs, with (La/Yb)N values of 28.56–37.01. The εNd(t) values range from ?10.6 to ?8.8, and (87Sr/86Sr)i = 0.7142–0.7210. Zircons from the pluton yield εHf(t) values of ?13.8 to ?1.6, and δ18O = 10.5–11.6‰. Petrographic and geochemical features of the pluton indicate that the granites are S-type and were derived from parting melting of a mixture of metasedimentary and minor metaigneous sources in the middle–lower crust. Magmatic differentiation was dominated by the fractional crystallization of plagioclase, K-feldspar, muscovite, biotite, and accessory monazite, allanite, and Fe–Ti oxides. Regional granitoids were emplaced in the Early-to-Middle Triassic. Other younger granitoids, with ages of 240–200 Ma, are mostly I-type in character and were likely derived from multiple types of source rock, suggesting the source was heterogeneous Triassic crust. Such a scenario is consistent with their formation in a post-collisional setting. Our new data, combined with other geological evidence, suggest that the collision between the Tianshuihai and southern Kunlun terranes occurred between ca. 250 and 240 Ma, resulting in the closure of the Palaeo-Tethys. Post-collisional tectono-magmatic events may have occurred between 240 and 200 Ma.  相似文献   

20.
High-Na slag-like rocks (paralava) with 4.5–11 % Na2O from the Altyn-Emel mud volcanic field, Kazakhstan, are the products of melting of sediment + salt mixtures by methane flares associated with mud extrusion. The main minerals of the paralavas are diopside and wollastonite which have quench morphologies. Other high-temperature phases (crystallizing from melt and vapour phase) are tridymite, cristobalite, chlorapatite, alkali feldspar, pyrrhotite, native iron and silicon, iron phosphides, titanite, rutile, and carbon. The paralavas lack the Na–Ca silicates devitrite and combeite, but have high-Na and Na–K glasses that have not been homogenized despite low viscosities of <10?3.5 Pa s. The large number of ignition foci in the Altyn-Emel mud volcano field indicates gas venting from small, shallow reservoirs. The methane flares are inferred to have been small and the fire events short-lived. Fires were extinguished once overpressure released during eruption, methane venting stopped and melted rocks rapidly quenched. The periodicity of eruptions and methane flaring most likely depends on the recurrence of earthquakes (M < 5) which are frequent in this tectonically active area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号